
Semantic Palette: Guiding Scene Generation with Class Proportions
Supplementary Material

This document provides additional insights into the Se-
mantic Palette, details on its use and on the baselines, and
qualitative results. Please note that, in the following, we
rely heavily on notations that are introduced in the main
body of the paper.

A. Connection to Sinkhorn algorithm
To carry on the discussion initiated in Section 3.1 of

the paper, we here elaborate on the connection between
our SAA module and the Sinkhorn algorithm [11], viewing
SAA through the lens of optimal transport [3].

Given an initial blank “canvas” having N = HW pix-
els, we define a uniform source histogram r = N−11N ,
standing for the equal chance of each pixel to be “drawn”
or occupied by one of the classes. The target histogram, or
semantic palette, t ∈ RC

+, defines the prescribed “budget”
for the C classes. One can defined the set of admissible
transport plans from one distribution to the other one:

U(r, t) := {P ∈ RC×N
+ |P1N = t,P>1C = r}. (1)

A connection of the soft mask m with these transport plans
is established as follows. Flattening spatial dimensions
(H × W → N ), the soft mask m is now in [0, 1]C×N ,
and it is expected to simultaneously verify:

N−1m1N = t , (2)

N−1m>1C = r , (3)

where (2) warrants that soft pixel-to-class assignments re-
spect the input class proportions ( 1

N

∑
n mc,n = tc) and

(3) ensures that at each pixel location there is a valid class
distribution (

∑
c mc,n = 1). If m verifies both, then

N−1m ∈ U(r, t). Note that, in practice, only (3) is a hard
constraint.

We can now formulate the task of finding 1
Nm as solving

an entropy-regularized optimal-transport problem [3]:

P ∗ = argmin
P∈U(r,t)

〈P ,K〉 − 1

λ
h(P ), (4)

where K ∈ RC×N is a suitable transport-cost matrix, h(P )
is the entropy of P , λ is a weight (fixed as 1 next) and 〈 , 〉
denotes the Frobenius dot-product.

In the SAA module, the cost matrix K is defined as −f .
Intuitively f , the “raw” output of our network, indicates the
initial class preference of each pixel i; its opposite −f can
be seen as the transportation cost, i.e., the higher the chance
to assign pixel i to class c, the lower the cost to “transport”
from pixel i to class c is.

To find the optimal plan P ∗, one can adopt the Sinkhorn
algorithm, initializing P as exp(−K) = exp(f) and al-
ternating row-wise and column-wise normalization/scaling
steps [3]:

P ← diag
[
t� (P1N )

]
P , (5)

P ← Pdiag
[
r � (P>1C)

]
, (6)

where � denotes the Hadamard entry-wise division. Eq. 5
amounts to successively normalizing each of the C rows
and then multiplying each by its target probability in t –
exactly how ω is derived from f ; Eq. 6 amounts to normal-
izing each of the N columns – exactly how m is derived
from ω (since m corresponds to NP ).

Effectively, the steps of the SAA presented in Section 3.1
of the paper correspond to a single step of this Sinkhorn al-
gorithm. Having more steps is possible, yet we opted to a
single one as to allow certain slacks in the final scene com-
position, i.e., not forcing an exact matching to the input se-
mantic palette.

B. Direct matching loss in Baseline 1

The baseline 1 introduced in Section 5.1 uses a direct
matching loss to enforce conditioning constraints. We pro-
vide here the detail of this loss.

The conditional layout generator G produces semantic
soft probability masks m ∈ [0, 1]C×H×W . Let us define φ :
[0, 1]C×H×W → ∆C the function that computes the class
histogram of the final semantic map derived from soft mask
m, where ∆C := {x ∈ RC

+ : x>1C = 1} is the probability
simplex. For each class c ∈ J1, CK, the proportion of pixels
assigned to this class in the image is given by:

φc(m) =
1

HW

∑
(i,j)∈Ω

[ argmax
k

mk,i,j = c ]. (7)
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This function φ being non-differentiable, it cannot be easily
used to define a training loss. Instead, we propose to use φ̂,
a differentiable soft estimation of the semantic histogram,
defined as:

φ̂c(m) =
1

HW

∑
(i,j)∈Ω

mc,i,j , (8)

for each c ∈ J1, CK. The matching loss in baseline 1 is
finally defined as the KL-divergence between target and es-
timated histograms:

LMATCH(G) = E(z,t)

[ ∑
c∈J1,CK

tc · log
( tc

φ̂c(G(z, t))

)]
.

(9)

C. Domain adaptation for data augmentation
We explain here how AdvEnt, the domain-adaptation

technique in [12], is mobilized in Section 5.2 when us-
ing both real and synthetic data. In effect, we adopt the
main ingredient of AdvEnt: an adversarial training proce-
dure to perform alignment on the so-called weighted self-
information space. While the segmenter is trained as usual,
an additional discriminator, taking segmenter’s prediction
as input, is trained in parallel to determine from which do-
main (real or synthetic) the prediction originates. Playing
the adversarial game, the segmenter tries to fool the dis-
criminator, eventually resulting in closing the domain gap.

Such a technique has been proven effective for unsuper-
vised domain adaptation in semantic segmentation, where
images are annotated only in one domain. We revisit it
in a different context, where full annotations are available
in both domains. Empirical results (Table 3 of the paper)
demonstrate the benefit of addressing domain gap this way
when using synthesized data for data augmentation. Since
for DA we use the default hyper-parameters from [12], fine-
tuning them might yield even higher performance.

D. Novelty loss for face editing
In the case of partial editing, the conditional layout gen-

eratorG takes a semantic layout l as input, in addition to the
noise z and the target palette t. We denote G(z, t, l) = m
the final edited layout produced by the generator, after the
generated partial layout and the input layout have been
merged. For the face editing task, different from the partial-
editing method proposed for data augmentation in urban
scenes, the input layout is not cropped. In addition, we
introduce a novelty loss on top of the conditional and adver-
sarial losses, to ensure that the edits do modify the original
content. It is defined by:

LNOV(G) =
1

|E|
E(z,t,l)

[ ∑
(i,j)∈E

∑
c∈J1,CK

lc,i,jmc,i,j

]
,

(10)

where E ⊂ Ω is the set of pixel locations where an edit
has been made, i.e., the dominant class in the partial layout
is not the background class. This loss is, at every edited
pixel location, the scalar product between the generated
soft probability distribution and the input one-hot one, and
therefore promotes orthogonal content between the two.

E. Better base generative frameworks
In this work, we built the layout synthesizer upon Pro-

GAN [5] as to guarantee a fair comparison to SBGAN [1]
and to highlight the merits of the proposed architecture de-
signs and learning objectives. We note that this part of
the Semantic Palette’s pipeline can leverage any other hi-
erarchical GAN architecture, for example StyleGAN [6] or
StyleGAN2 [7]. In fact, the choice of the base generative
framework is orthogonal to our contributions and any im-
provement on it should increase the performance of both the
Semantic Palette and the considered baselines. Similarly,
for the image generation part, we adopted GauGAN [10] as
done in SB-GAN [1] to ensure fair comparison while not-
ing that the choice of this generator is orthogonal to our
contributions; in particular, if using a different framework
like CC-FPSE [9] was to bring improvements, they would
benefit to all compared pipelines.

F. Implementation details
Weights for losses. All the introduced losses are equally

weighted in the experiments. However, a particular weight-
ing may prove useful for specific applications such as to im-
prove further the semantic control at the expense of a slight
degradation of the image realism or the other way around.

Layout synthesis model. The layout generator is trained
with ADAM [8], an initial learning rate of 10−3, β =
(0, 0.99) and specific epochs (600 to 150) and batch sizes
(1024 to 8) for every resolution (4×8 to 128×256).

Image synthesis model. The image generator is trained
with ADAM [8], an initial learning rate of 2 · 10−4, β =
(0.5, 0.999) for 200 epochs and a batch size of 8.

Segmenter. We train a DeeplabV3 [2] model with
Stochastic Gradient Descent, an initial learning rate of
10−2, 0.9 momentum, 5·10−4 weight decay, for 300 epochs
and a batch size of 16.

Palette generator. The GMM model is trained on the
semantic proportions from the real training dataset, using
the expectation-maximization (EM) algorithm. The num-
ber of Gaussian components control the trade-off between
approximation and generalization. We select their number
using the Akaike Information Criterion (AIC), which bal-
ances these two objectives.

In practice, to ensure that the vectors sampled from
the GMM are true proportions, i.e., non-negative and L1-
normalized, one has to project them onto the probability
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(a) Cityscapes (b) Cityscapes-25k (c) IDD
Data Method Crop mIoU∗ mIoU mIoU∗ mIoU mIoU∗ mIoU

Real Baseline
36.9 48.1 36.5 53.0 33.8 43.8

X 35.7 ↓1.2 51.4 ↑3.3 35.5 ↓1.0 59.6 ↑6.6 32.7 ↓1.1 40.0 ↓3.8

Real + Syn
Sem. Palette (DA)

38.6 51.6 38.6 57.3 34.5 44.7
X 38.7 ↑0.1 52.2 ↑0.6 32.9 ↓5.7 57.0 ↓0.3 29.8 ↓4.7 38.5 ↓6.2

Sem. Palette (Part. + DA)
40.7 52.6 42.5 60.5 35.3 45.8

X 39.8 ↓0.9 54.4 ↑1.8 37.0 ↓5.5 56.4 ↓4.1 31.1 ↓4.2 39.7 ↓6.1

Table 1: Using cropping to augment real data. Same notations as in Table 3 of the paper. In each group, models using cropping are
compared against the ones without.

C–simplex. As the projection is not easy to compute analyt-
ically, one can get a good approximation with constrained
minimization methods such as the trust-region constrained
algorithm. However, their convergence is slow, making
them impractical in our case. Instead, we chose to com-
pute a rough estimate of the projection by first clipping the
sampled vectors to [0, 1] and then normalizing them.

G. Standard data augmentation.
We used random horizontal flipping in all experiments

done in the main paper.
Cropping is another standard data augmentation strat-

egy used in semantic segmentation. We provide here an
ablation study where we additionally perform cropping to
augment real data while training the baseline and Seman-
tic Palette models. We report in Table 1 the performance
on the three benchmarks. In terms of mIoU, we observe
only on Cityscapes that cropping helps improve all methods
and achieves best scores when combined with our augmen-
tation strategy; yet, on the other datasets, having cropping
degrades the performance. In terms of mIoU∗, the perfor-
mance drops in most cases. These results reveal different
behaviors in the three datasets when including cropping in
the data augmentation procedure during training. We note
that, as cropping is done only on real data, increase or de-
crease in performance by using it is orthogonal to our pro-
posed framework. Overall, the best results are obtained us-
ing Semantic Palette.

H. Additional experiments.
We provide results of a few additional experiments

aimed at evaluating the Semantic Palette in different setups,
namely with other types of data and at higher resolution.

Effect of Semantic Palette on non-urban scenes. To
verify that the proposed method generalizes well to other
types of natural images, we trained the Semantic Palette and
the unconditional baselines on the ADE-Indoor dataset [13]
at 128×256 resolution. The results, as shown in Table 2,
confirm the advantage of our model over the unconditional
baselines.

Ability to scale to higher resolutions. To afford an ex-

Method
Layout Image GAN-test GAN-train
FSD ↓ FID ↓ mIoU mIoU

PCGAN [4] 211.7 96.6 11.1 6.8
SB-GAN [1] 211.7 93.7 12.2 7.0
Sem. Palette 76.1 88.4 20.1 10.5
SB-GAN e2e [1] 93.3 82.7 15.3 10.0
Sem. Palette e2e 19.0 76.5 21.4 11.7

Table 2: Results on ADE-Indoor.

Method
Layout Image GAN-test GAN-train
FSD ↓ FID ↓ mIoU∗ mIoU mIoU∗ mIoU

SB-GAN [1] 66.0 74.8 34.9 46.0 28.0 35.7
Sem. Palette 32.4 66.7 38.0 50.0 32.1 42.3

Table 3: Results on Cityscapes at resolution 256×512.

tensive evaluation of the proposed methods compared to the
different baselines, all experiments were conducted at the
128×256 resolution. To evaluate the performance at higher
resolution, we now compare the Semantic Palette to SB-
GAN at the 256×512 resolution on Cityscapes. The results,
in Table 3, turn out to be consistent with the ones reported
at 128×256.

I. Qualitative results
We provide additional qualitative results of scene gener-

ation in Figures 1 and 2, and of face editing in Figures 3, 4
and 5. These figures are best viewed in color.
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Figure 1: Conditional layout-and-scene generation. Various layout-scene pairs sampled from the same semantic code (left).
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(a) input layout (b) cropped layout (c) generated partial layout (d) final merged layout

Figure 2: Partial editing of layouts. The procedure consists in cropping ground-truth layouts and then synthesizing new objects within
the cropped area, guided by the initial semantic proportions.
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Figure 3: Hair manipulation 1: Grow existing hair. We select subjects with short hair and progressively increase the hair budget. The
hair style corresponds to the input ground-truth image-layout pair. Please, zoom in for details.
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Figure 4: Hair manipulation 2: Bald to not bald. We select bald subjects and progressively increase the hair budget. Since there is no
hair initially, the hair style is randomly burrowed from another subject in the training set. Please, zoom in for details.
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Figure 5: Manipulation of diverse semantic attributes. Glasses (1st row), hat (2nd), teeth (3rd). Please, zoom in for details.
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