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A. Appendix
A.1. Quantitative comparison on DeepStab [9]

We compare our Deep3D Stabilizer with state-of-the-art
methods on DeepStab dataset [9]. DeepStab contains 61
pairs of synchronized unsteady and steady videos captured
by two handheld cameras and one of which is mounted on
a hardware stabilizer. We conduct the comparison on the
test-split of DeepStab provided by Zhao et al. [10] in Ta-
ble A.1. The stability of hardware stabilizer shows lower
score than some software stabilizers may due to the limiting
range of mechanical arm. Besides, we compute the crop-
ping ratio with respect to input unsteady video to measure
the view loss from input. Note that hardware stabilizer does
not perform cropping process but we also compute the over-
lapping area with input video as reference. Our Deep3D
shows the second best cropping score in the software stabi-
lization methods. On the other hand, we measure the global
distortion scores with respect to synchronized steady video
since the unsteady input video may contain more undesired
distortion than steady video (e.g., rolling shutter effects.)
Our method has similar degree of global distortion to input
videos since we do not handle distortion effects appeared in
input video. Yet, StabNet [9] introduces even more distor-
tion than input and ours.

A.2. Ablation studies on TUM RGB-D dataset [8]

We conduct the ablation studies on two random se-
lected videos from TUM RGB-D dataset [8], which con-
tains RGB-D videos and positioning groundtruth data cap-
tured by handheld Kinect and motion-capture system, re-
spectively. Therefore, both the depth and camera pose es-
timation can be examined with the stabilized results. We
also perform stabilization with groundtruth positioning and
depth map as a reference ‘GT’. The quantitative results of
ablation on loss terms are shown in Table A.2. The different
approaches show similar cropping and stability results yet
the global distortion of the results are introduced due to the
error of depth estimation. We admit that the errors of our 3D

Methods
Cropping

w.r.t.
Input

Distortion
w.r.t.

hardware
Stability

Input - 0.85 14.2
Hardware 0.84 - 16.0
Adobe [4] 0.53 0.84 16.7
DIFRINT [1] 0.98 0.85 15.5
MeshFlow [5] 0.44 0.83 17.4
StabNet [9] 0.39 0.78 15.6
Ours 0.65 0.85 17.5

Table A.1. Quantitative comparison on DeepStab [9]. The crop-
ping ratio is measured with respect to input unstable video to mea-
sure the view loss from input video. Yet the global distortion score
is measured with respect to synchronized steady video (i.e. hard-
ware). The higher score of each metric indicates the better result.
The best and the second best results are bolded and underlined,
respectively.

Methods 3D estimation error↓ Video Stab.↑
depth pose C D S

Input - - - - 17.1
GT - - 0.51 0.90 20.4

w/o LG 1.60 1.04 0.52 0.46 20.0
w/o LF 0.97 0.54 0.54 0.74 20.3

Full 0.74 0.33 0.53 0.84 20.2

Table A.2. Ablation studies on TUM RGB-D [8]. The error met-
rics of depth and pose are squared relative difference [2] and ab-
solute trajectory error [8], respectively.

estimations are slightly large since we found a faithful 3D
estimation would satisfy the quality of stabilization when
replacing 2D with 3D transformation. Thus, instead of pur-
suing accuracy of depth and pose estimation, we reduce the
computation time by parameter propagation for overlapping
snippets and handling moving objects in post-processing.



Category Metric Input
Liu et al.

[3]
Deep3D
(ours)

Regular

Cropping - 0.44 0.79
Distortion - 0.85 0.97
Stability 10.81 14.25 15.30
# failure - 3 0

Parallax

Cropping - 0.74 0.76
Distortion - 0.85 0.92
Stability 12.80 14.67 14.74
# failure - 5 0

Crowd

Cropping - 0.56 0.70
Distortion - 0.89 0.93
Stability 16.51 18.09 18.37
# failure - 7 0

Running

Cropping - 0.46 0.49
Distortion - 0.77 0.89
Stability 10.08 15.49 15.47
# failure - 3 0

Quick
Rotation

Cropping - 0.69 0.57
Distortion - 0.84 0.88
Stability 18.86 19.23 21.69
# failure - 16 0

Zooming

Cropping - 0.65 0.62
Distortion - 0.93 0.95
Stability 16.96 19.42 21.33
# failure - 17 0

Table A.3. Quantitative comparison with Liu et al. [3]. The
scores are averaged over videos that are reconstructed and stabi-
lized successfully. The higher score of cropping, global distortion
and stability indicates the better result. The ‘# failure’ stands for
the number of videos failed in 3D reconstruction stage.

A.3. Comparisons with traditional 3D approach

We compare our Deep3D stabilizer with Liu et al. [3],
which is a traditional 3D method using structure-from-
motion to obtain the 3D path and sparse feature to guide the
warping. We re-implement their content-preserving algo-
rithm in Python and using COLMAP [7] for the 3D recon-
struction stage. However, over one third of videos in NUS
dataset [6] are failed to be stabilized since the tradiditonal
SfM is often fragile. Therefore, we only compare the videos
that are reconstructed successfully. As shown in Table A.3,
our method outperforms Liu et al. [3] in general. Moreover,
Liu et al. [3] often introduces local distortion due to some
mis-matching structure points or dynamic objects (shown in
Figure A.1.) On the other hand, [3] requires several hours in
SfM stage for a short sequence and only reaches about 2 fps
in warping optimization stage. In contrast, our optimization
of 3D reconstruction and frame rectification only takes 641
ms and 29 ms per frame in average, respectively. In sum,
our Deep3D stabilizer shows advantages of robustness of
3D reconstruction and computation efficiency.

Figure A.1. Visual comparison with Liu et al. [3]. (a) shows the
optimized warping mesh of Liu et al. [3] guided by sparse structure
points. (b) and (c) are the warped results of Liu et al. [3] and ours,
respectively. The local distortion are pointed out by red arrows.
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