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S1. Implementation details
TV norm. To suppress the artifacts in the maskM, we

regularizedM with total variation (TV) norm in Eq. 1 in
the main paper, as done in Fong et al. [4]. The resulting loss
function to find the bestM∗ becomes:

LM =λ ‖M‖1 + λTV ‖∇M‖ββ
+ 1box

∥∥tc − f box(Φ(I,M), o)
∥∥
1

+ 1cls
∥∥pc − f cls(Φ(I,M), o)

∥∥
1
,

(S1)

where λTV is a balancing factor for TV norm. We set λTV to
10−4 and β to 3. We observed that the resulting maskM∗
has a little dependency on the value of λTV.

We can find the bestM∗ by using gradient descent with
respect to M. Letting the mask at iteration t be Mt, the
mask at iteration t+ 1 can be expressed as

Mt+1 =Mt − ξ∇MtLMt , (S2)

where ξ is a learning rate. Indeed, the update in Eq S2 was
implemented through Adam optimizer.

Optimization details for semantic segmentation. We
used the default setting provided by [14], except for the batch
size, the number of training iterations, and the learning rate.
We set the batch size to 8, the number of training iterations
to 2.4× 104, and the learning rate to 2× 10−4.

Optimization details for instance segmentation on the
PASCAL VOC dataset. Regarding the characteristics of the
PASCAL VOC dataset [2], we adjusted the input image size
and the anchor size accordingly. We set the max and min size
of training images to 800 and 512, respectively, and anchor
sizes for each FPN level to [21, 42, 84, 168, 332]. We trained
Mask R-CNN [5] with a learning rate 8× 10−3 for 2× 104

iterations.
Optimization details for instance segmentation on the

MS COCO 2017 dataset. We followed the default settings
provided by maskrcnn-benchmark repository [13].

Post-processing of semantic and instance segmenta-
tion. CRF [8] is a popular post-processing technique for

semantic and instance segmentation [6, 7, 9, 10, 17]. We
also used CRFs as a post-processing method for semantic
and instance segmentation.

S2. Additional Results

Comparison of per-class mIoU scores. Table S1 shows
the per-class mIoU of our method and recently produced
methods.

More examples of BBAMs. We present more examples
of BBAMs for PASCAL VOC [2] validation images with
Faster R-CNN [15] (Figure S1) and for MS COCO 2017 [12]
validation images with Faster R-CNN [15] (Figure S2).

Additional mask examples on semantic segmentation.
Figure S3 shows more examples of the semantic masks pro-
duced by DSRG [7], Shen et al. [16], FickleNet [9], Lee et
al. [10], and our method.

More mask examples on instance segmentation. Fig-
ure S4 shows more examples of the instance masks on PAS-
CAL VOC 2012 validation images obtained from IRNet [1],
Hsu et al. [6], and our method. Figure S5 shows examples
of instance masks on MS COCO 2017 validation images
obtained by our method.
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Figure S1: Examples of PASCAL VOC [2] validation images with the results of object detection and corresponding BBAMs,
obtained from Faster R-CNN [15].
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Figure S2: Examples of MS COCO 2017 [12] validation images with the results of object detection and corresponding
BBAMs, obtained from Faster R-CNN [15].
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Image Ground Truth DSRG Shen et al. Lee et al. OursFickleNet

Figure S3: Examples of predicted semantic masks for PASCAL VOC validation images of DSRG [7], Shen et al. [16],
FickleNet [9], Lee et al. [10], and our method.
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Figure S4: Examples of predicted instance masks for PASCAL VOC validation images of our method.

Figure S5: Examples of predicted instance masks for MS COCO 2017 validation images of our method.
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