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1. Motivation for Separator Design
In this section, we provide an additional discussion on

the motivation of our network design with a separator with
a comparison of different network structures. Traditional
domain adaptation methods [2, 3] learn encoders for each
source and target images to be mapped into domain invari-
ant space as illustrated in Fig. 1**-(a). The individual char-
acteristics of each domain can be disregarded on the domain
invariant space, so it can degrade the task discrimination.
Note that, during the training process, they impose losses
to minimize task discrimination and maximize domain dis-
crimination.

While the researches on domain adaptation focus on the
domain invariance, a recent study on style transfer [11]
attempts to disentangle image representation into content
and style components and transfer the style. We observe
that the representation disentanglement can bring great ad-
vantages to the domain adaptation, such as (1) preserving
each domain’s characteristics, (2) improving adaptation per-
formance, and (3) transferring domains multi-directionally
with a single network. However, the work [11] separates
the representations linearly in the complex non-linear man-
ifold space in Fig. 1-(b). As demonstrated in an experiment
in Fig. 1, their simple linear separation scheme often fails
to disentangle the content and style, and consequently, their
approach often produces incorrectly adapted results.

To overcome the limitations of the linear separation
while taking the advantage of representation disentangle-
ment, in our work, we propose a Disentangling Representa-
tion and Adaptation Network. DRANet contains a separator
composed of two convolutional layers as non-linear func-
tion and domain-specific scale parameters as illustrated in
Fig. 1-(c). Our intuition behind the network design is that
different domains may have different distributions for their
contents and styles, which cannot be effectively handled by
a linear separation using a single encoder. Thus, to handle

*Corresponding author.
**Blue number indicates figure in main paper.

such difference, our network adopts the non-linear separa-
tion and domain-specific scale parameters that is dedicated
to handle such inter-domain difference. As the proposed
separator provides domain-adaptive separation of the con-
tent and style, our encoder and decoder can handle images
from different domains in a unified way and still achieve the
state-of-the-art domain adaptation results.

We compare the results of our method in Fig. 1-(a), (c),
and that of a linear separation approach in Fig. 1-(b), (d).
The first and third columns in the figure depict source and
target domain images, respectively, while the second and
fourth columns show domain-adapted results. If the content
and style features were well-separated, then the images in
the second column should have the contents of the source
domain images and the style of the target domain images.
Similarly, the images in the fourth column should have the
contents of the target domain images and the style of the
source domain images. However, as shown in Fig. 1-(b), the
images in the fourth column have the same contents with
the source domain images, which indicates that the method
failed to separate the content and style. Also, as shown in
Fig. 1-(d), the failure of separating the content and style can
cause mode collapse, which is an undesirable behavior of
GAN-based methods. As shown in this experiment, with-
out careful hyperparameter adjustment, the training of the
model with simple assumption of [11] easily goes to wrong.

2. Implementation Details
We summarize our training algorithm in Algorithm 1.

We first learn all discriminator D ∈ D to maximize the ad-
versarial loss, whereD is the set of discriminators. Then, we
learn the encoder E, separator S, and generator G to min-
imize the reconstruction, consistency, adversarial and per-
ceptual loss functions. For the balance of learning, we run
two iterations of learning forE, S, andGwhile running one
iteration for D.

The trained network produces the domain adapted im-
ages IX→Y transferred from source domain X to target do-
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Source images Source to target images Target images Target to source images

(a) Results of our network between MNIST and MNIST-M

(b) Results of a linear separator between MNIST and MNIST-M

(c) Results of our network between MNIST and USPS

(d) Results of a linear separator between MNIST and USPS

Figure 1. Domain adaptation results of (a), (c) our network illustrated in Fig. 1-(c) and (b), (d) a linear separator illustrated in Fig. 1-(b).
Note that, the contents shown in (b), (d) are not preserved for many cases.

main Y , which will be used to train the task network T . We
train the network, either a classification or a segmentation
network in this paper:

min
T
LX→YTask (IX , IX→Y ,YX), (1)

where YX is the ground-truth labels corresponding to
source images IX . Note that, we do not use the ground-truth
labels of target domain Y to train the task network, and after
training, we evaluate the performance of the task network
using the target domain test sets. We use a typical softmax
cross-entropy loss as the task loss for both classification and
segmentation. To further improve the performance of a task
network, we train it every single iteration of DRANet train-
ing. We use the Adam optimizer with learning rate 1e-3 for
learning all networks in DRANet. For learning the classifica-
tion network, we use the stochastic gradient descent (SGD)
optimizer with learning rate 5e-4 and momentum 0.9. For
learning the segmentation network, we use the SGD opti-
mizer with learning rate 2.5e-4 and momentum 0.9.

We use batches of 32 samples resized to 64 × 64 for
the digit adaptation, and batches of 2 samples resized to
512 × 1024 for the driving scene adaptation. Our network
architecture is illustrated in Fig. 2. For stable training, we
apply spectral normalization [6] to all layers in the gener-
ator and discriminator except the residual blocks. We find

Algorithm 1 Algorithm for training DRANet
1: Input: IX , IY

// Source and target domain images
2: Output: IX→Y , IY→Y , I ′X , I ′Y

// Domain transferred and reconstructed images
3: for k = 1 ... K do
4: θ∗D = argmaxθD LGAN , where D ∈ D

// Update every D
5: for i = 1 to 2 do
6: θ∗E , θ

∗
S , θ
∗
G =

argminθE ,θS ,θG
(
LRec + LCon + LGAN + LPer

)
// Update every E, S, G

7: end for
8: end for

that batch instance normalization [7] is more effective than
batch normalization [4] and instance normalization [10] in
our framework. We use an ImageNet-pretrained VGG-19
network [9] as the perceptual network, and compute the
content perceptual loss at layer relu4 2 and the style percep-
tual losses at layers relu1 1, relu2 1, relu3 1, and relu4 1.
We set the domain-specific scale parameters of the same
size as featuresF , and perform element-wise multiplication
for scaling.
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Residual block Encoder Generator Separator

Discriminator (Digit) Discriminator (Driving Scene) Classification Network

Figure 2. Our network details including the encoder E, separator S, generator G, discriminators D, and task network T . BIN and Resblock
are batch instance normalization layer and residual block, respectively. DSeg has same structure with PatchGAN discriminator [5].

3. Effect of Content-Adaptive Domain Trans-
fer (CADT)

Fig. 3 presents zoom-in views of Fig. 8 in the main pa-
per for better comparison. Specifically, the first row of the
figure shows a source image from the GTA5 dataset [8],
its transformed images with CADT and without CADT, re-
spectively, and a randomly selected target image from the
CityScapes dataset [1]. The second and third rows show
zoom-in views of their corresponding images on the first
row. As described in Fig. 8 in the main paper, Fig. 3-(b)
is obtained using CADT at inference time using four target
images while Fig. 3-(c) is obtained using the target image in
Fig. 3-(d) without CADT. As shown in Fig. 3-(b), the model
with CADT successfully generates a visually pleasing result
without artifacts. On the other hand, Fig. 3-(c) shows ghost-
ing artifacts caused by the target image in Fig. 3-(d) that
is semantically distant from the source image. This result
indicates that the style feature from Fig. 3-(d) has content-

related information. We found that CADT is especially ef-
fective in training our networks. Specifically, it helps the
networks to learn better separation of the content and style
of an image, and eventually leads to better domain adapta-
tion results as shown in Fig. 3.

References

[1] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3213–3223, 2016. 3

[2] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. The Journal of Machine Learning
Research, 17(1):2096–2030, 2016. 1

3



(a) Source image (GTA5) (b) Result with CADT (c) Result without CADT (d) Target image (Cityscapes)

Figure 3. Comparison on image synthesis using Content-Adaptive Domain Transfer (CADT) and normal Domain Transfer (DT).
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