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1. RealDOF Test Set

We present the Real Depth of Field (RealDOF) test set
for quantitative and qualitative evaluations of single image
defocus deblurring. Our RealDOF test set contains image
pairs, each of which consists of a defocused image and
its corresponding all-in-focus image that have been concur-
rently captured for the same scene.

To simultaneously capture such pairs of images, we built
a dual-camera system (Fig. 1), where two cameras are ver-
tically and horizontally aligned to each other on a vertical
camera rig. The rig is designed to physically align the cam-
eras as precisely as possible to ensure accurate alignment
between the captured images. On the rig, we install a beam
splitter between the cameras whose lenses are facing toward
the beam splitter. The rig is encased with an optical enclo-
sure that blocks light coming from outside of the viewing
direction. In the system, we use the same models for the
cameras (Sony A7R IV) and lenses (Sony 135mm F1.8).
The cameras are connected with a multi-camera trigger for
simultaneous capturing of images. We set the cameras with
the minimum shutter speed of 1/125 seconds to avoid mo-
tion blur. ISO is adjusted accordingly for the images to pick
up the same exposure.

Using the dual-camera system, we first capture defo-
cused and all-in-focus images (namely, target image pairs).
For a target image pair, one camera captures a defocused
image with a wide aperture (F1.8- 5.6), and the other cam-
era obtains an all-in-focused image with a narrow aperture
(F16). Images are captured in a 14-bit raw (Sony ARW)
with the resolution of 9504× 6344. The captured images
are then processed to an sRGB using Adobe Lightroom and
encoded with a lossless 16-bit TIFF format. Then, the en-
coded images are resized to 2376×1586, and geometric and
photometric alignments are performed. As it is ambiguous
to geometrically align blurry and sharp frames, we addi-
tionally capture all-in-focus image pairs (namely, reference
image pairs) of the same scene, motivated by [4]. For the
reference image pairs, we set both cameras with the same
aperture (F16).
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(a) Diagram for our dual-camera system.

(b) Our dual-camera system.

Figure 1. Our image acquisition system for the RealDOF test set.

Although the vertical rig used for our system is designed
to accurately align the cameras, physical misalignment may
still exist. Besides, the cameras may move slightly over time
due to shakes. To handle such physical misalignments, we
apply geometric alignments to captured images. We first
compute a homography matrix from the reference image
pair. As in [4], we use the enhanced correlation coefficients
method [2], which is robust to photometric misalignment.
Then, the matrix is applied to the corresponding target im-
age pair, where the all-in-focused image is geometrically
aligned to the defocused image using the matrix.

We use the same models for the two cameras and their
lenses, but captured images still may exhibit exposure dif-
ferences. We address this issue with photometric alignment
based on a linear model as in [4]. Specifically, we compute
linear photometric parameters from a target image pair, and
then apply the parameters to the all-in-focus image to match
its exposure to that of the defocused image. The final Re-
alDOF test set contains geometrically and photometrically
aligned target pairs of defocused and all-in-focused images.
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(a) Input (b) DPDNetS (c) Ours
Figure 2. Failure cases. The input images are from the CUHK blur
detection dataset [5]. From left to right: a defocused input image,
deblurred results of DPDNetS [1] and our method.

2. Failure Cases
Our network works best with typical isotropic defocus

blur, and may not properly handle blur with irregular shape
(e.g. swirly bokeh as in the first row of Fig. 2) or strong
highlight (i.e. glitter bokeh as in the second row).

3. Our Model with Different Input Types
16-bit images Our final model is trained on 8-bit im-
ages, as most standard encodings still rely on 8-bit im-
ages. Nonetheless, we also show the capability of our model
in handling high bit-depth images, as the final model of
DPDNet is targeted for 16-bit images. Table 1 shows a
quantitative comparison on the DPDD dataset between our
model and DPDNets that are trained and tested for 16-bit
images. Our model outperforms DPDNets for all the de-
blurring metrics.

Dual-pixel images The deblurring performance of our
model further increases if we explicitly feed dual-pixel im-
ages. Table 2 and Figs. 3, 4, and 5 show quantitative and
qualitative comparisons of our model fed with dual-pixel
images (OursD). OursD has the same architecture of our
final model taking a single image, except that the filter en-
coder in IFAN is fed with dual-pixel stereo images (I lB and
IrB) that are concatenated along the channel dimension. In
the figures, Oursdual shows better performance in handling
spatially-varying (the red and green boxes at different focal
planes in the figures) and large (green boxes) defocus blur.

4. Effect of Noise Augmentation Level
Table 3 shows the effect of the noise level used to aug-

ment training images. For training each model in the table,
defocused images are randomly augmented with Gaussian
noise, controlled by a random standard deviation within a
range [0, σ]. We can infer from the table that compared
to a model trained with a low noise level, a model trained
with a higher noise level is better in restoring overall image
contents (higher PSNR), but worse in recovering textures
(higher LPIPS).

Model
Evaluations on the DPDD Dataset [1]

PSNR↑ SSIM↑ MAE(×10-1)↓ LPIPS↓

DPDNetD-16 25.13 0.786 0.406 0.224
DPDNetS-16 24.41 0.751 0.434 0.278

OursS-16 25.38 0.791 0.394 0.213

Table 1. Quantitative comparison of 16-bit-based models.

Model
Evaluations on the DPDD Dataset [1]

PSNR↑ SSIM↑ MAE(×10-1)↓ LPIPS↓

DPDNetD 25.23 0.787 0.401 0.224
OursD 25.99 0.804 0.373 0.207

Table 2. Quantitative comparison of dual-pixel-based models.

σ
Evaluations on the DPDD Dataset [1]

PSNR↑ SSIM↑ MAE(×10-1)↓ LPIPS↓

0.07 25.37 0.789 0.394 0.217
0.14 25.38 0.789 0.395 0.221
0.21 25.39 0.787 0.394 0.224

Table 3. Comparison between models trained with different noise
augmentation levels. σ indicates the standard deviation of Gaus-
sian noise used to augment defocused images in the training set.

5. Additional Qualitative Results
We show qualitative results on the DPDD test set [1]

(Figs. 6, 7, and 8). For the qualitative results of real-world
defocused images in different datasets, we show the results
of the proposed RealDOF test set (Figs. 9 and 10), Pixel
dual-pixel test set [1] (Figs. 11 and 12), and the CUHK
dataset [5] (Figs. 13 and 14).

For the CUHK dataset, for readers to visually understand
the capability of our method in handling spatially-varying
and large blur, we visualize Gaussian point-spread-function
(PSF) for each sampled coordinate of defocused images.
Each PSF is generated using σ at the corresponding coor-
dinates of a defocus map, which is computed by [3] and
contains per-pixel standard deviations for a Gaussian ker-
nel. Note that each PSF is displayed in a 31×31 grid and
normalized for the visualization.

6. Network Architectures
The detailed network architectures of the models used

for the ablation study (Sec. 4.1. of the main paper) are
shown in Tables 4, 5, 6, 7, and Fig. 15.

For the tables, type, input, act, k, c, s, p and
N in columns denote the type of a layer, input for the
layer, activation function, kernel size, out-channels, stride,
padding, and repeating number, respectively. For leaky-
ReLU (lrelu), we use 0.1 for its negative slope. For the layer
types, we have conv, dconv, identity, cat, and sum, which
denote convolution, deconvolution, identity, concatenation,
and element-wise summation layers, respectively.



(a) Input (b) DPDNetD [1] (c) OursD (d) GT
Figure 3. Qualitative comparison of dual-pixel image-based models on the DPDD dataset [1]. The first and last columns show defo-
cused input images and their ground-truth all-in-focus images, respectively. Between the columns, we show deblurring results of different
methods. Images in the red and green boxes are zoomed-in cropped patches.



(a) Input (b) DPDNetD [1] (c) OursD (d) GT
Figure 4. Qualitative comparison of dual-pixel image-based models on the DPDD dataset [1]. The first and last columns show defo-
cused input images and their ground-truth all-in-focus images, respectively. Between the columns, we show deblurring results of different
methods. Images in the red and green boxes are zoomed-in cropped patches.



(a) Input (b) DPDNetD [1] (c) OursD (d) GT
Figure 5. Qualitative comparison of dual-pixel image-based models on the DPDD dataset [1]. The first and last columns show defo-
cused input images and their ground-truth all-in-focus images, respectively. Between the columns, we show deblurring results of different
methods. Images in the red and green boxes are zoomed-in cropped patches.



(a) Input (b) DPDNetS [1] (c) DPDNetD [1] (d) Ours (e) GT
Figure 6. Additional qualitative results on the DPDD dataset [1]. The first and last columns show defocused input images and their
ground-truth all-in-focus images, respectively. Between the columns, we show deblurring results of different methods. Images in the red
and green boxes are zoomed-in cropped patches.



(a) Input (b) DPDNetS [1] (c) DPDNetD [1] (d) Ours (e) GT
Figure 7. Additional qualitative results on the DPDD dataset [1]. The first and last columns show defocused input images and their
ground-truth all-in-focus images, respectively. Between the columns, we show deblurring results of different methods. Images in the red
and green boxes are zoomed-in cropped patches.



(a) Input (b) DPDNetS [1] (c) DPDNetD [1] (d) Ours (e) GT
Figure 8. Additional qualitative results on the DPDD dataset [1]. The first and last columns show defocused input images and their
ground-truth all-in-focus images, respectively. Between the columns, we show deblurring results of different methods. Images in the red
and green boxes are zoomed-in cropped patches.



(a) Input (b) DMENet [3] (c) DPDNetS [1] (d) Ours (e) GT
Figure 9. Additional qualitative comparison results on the proposed RealDOF test set. The first and last columns show defocused input
images and their ground-truth all-in-focus images, respectively. Between the columns, we show deblurring results of different methods.
Images in the red and green boxes are zoomed-in cropped patches.



(a) Input (b) DMENet [3] (c) DPDNetS [1] (d) Ours (e) GT
Figure 10. Additional qualitative comparison results on the proposed RealDOF test set. The first and last columns show defocused input
images and their ground-truth all-in-focus images, respectively. Between the columns, we show deblurring results of different methods.
Images in the red and green boxes are zoomed-in cropped patches.



(a) Input (b) DPDNetS [1] (c) DPDNetD [1] (d) Ours (e) OursD
Figure 11. Qualitative comparison on the Pixel Dual-Pixel dataset [1]. The first columns show defocused input images, and for the other
columns, we show deblurring results of different methods. Images in the red and green boxes are zoomed-in cropped patches.



(a) Input (b) DPDNetS [1] (c) DPDNetD [1] (d) Ours (e) OursD
Figure 12. Qualitative comparison on the Pixel Dual-Pixel dataset [1]. The first columns show defocused input images, and for the other
columns, we show deblurring results of different methods. Images in the red and green boxes are zoomed-in cropped patches.



(a) Input (b) DPDNetS [1] (c) Ours (d) PSF visualization of (a)
Figure 13. Qualitative comparison on the CUHK dataset [5]. The first and last columns show defocused input images and their per-pixel
Gaussian PSFs visualized on sampled coordinates, respectively. Between the columns, we show deblurring results of different methods.
Green and red boxes highlight the regions with large defocus blur and their deblurred results, respectively.



(a) Input (b) DPDNetS [1] (c) Ours (d) PSF visualization of (a)
Figure 14. Qualitative comparison on the CUHK dataset [5]. The first and last columns show defocused input images and their per-pixel
Gaussian PSFs visualized on sampled coordinates, respectively. Between the columns, we show deblurring results of different methods.
Green and red boxes highlight the regions with large defocus blur and their deblurred results, respectively.



↓ For both training and testing
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.) type input act k c s p N output

conv IB lrelu 3 32 1 1 3 conv1

conv conv1 lrelu 3 64 2 1 1 conv2

conv conv2 lrelu 3 64 1 1 2 conv2

conv conv2 lrelu 3 128 2 1 1 conv3

conv conv3 lrelu 3 128 1 1 2 conv3

conv conv3 lrelu 3 128 2 1 1 conv4

conv conv4 lrelu 3 128 1 1 2 eB

IF
A

N

F.E. IB - - - - - - eF

conv eF lrelu 3 128 1 1 1 conv
RES∗ conv - - 128 - - 2 res
RES∗ res - - 128 - - 2 res
conv res lrelu 3 1 1 1 1 conv

cat eB - - - - - - cat
conv conv lrelu 3 128 1 1 1 conv
RES∗ conv - - 128 - - 15 res
conv res lrelu 3 128 1 1 1 eBS

R
ec

on
st

ru
ct

or

conv eBS lrelu 3 128 1 1 1 conv
RES∗ conv - - 128 - - 15 res
conv res lrelu 3 128 1 1 1 conv
UP∗ (res, conv3) - - 128 - - - up
UP∗ (up, conv2) - - 64 - - - up
UP∗ (up, conv1) - - 32 - - - up

conv up lrelu 3 3 1 1 1 conv
sum IB - - - - - - IBS

↓ Pre-defined blocks

R
E

S∗

identity input - - - - - - conv′

conv conv′ lrelu 3 c 1 1
N

conv
conv conv - 3 c 1 1 conv
sum conv′ lrelu - - - - conv′

sum input - - - - - - res

U
P∗

dconv input[0] lrelu 4 c 2 1 1 dconv
sum input[1] - - - - - - sum

RES∗ sum - - c - - 1 res
RES∗ res - - c - - 1 up

Table 4. Detailed network architecture of the baseline model used for the ablation study.



↓ For both training and testing
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conv IB lrelu 3 32 1 1 3 conv1

conv conv1 lrelu 3 64 2 1 1 conv2

conv conv2 lrelu 3 64 1 1 2 conv2

conv conv2 lrelu 3 128 2 1 1 conv3

conv conv3 lrelu 3 128 1 1 2 conv3

conv conv3 lrelu 3 128 2 1 1 conv4

conv conv4 lrelu 3 128 1 1 2 eB

IF
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N

F.E. IB - - - - - - eF

conv eF lrelu 3 128 1 1 1 conv
RES∗ conv - - 128 - - 2 res
RES∗ res - - 128 - - 2 res
conv res - 3 1 1 1 1 dr→l

conv dr→l lrelu 3 128 1 1 1 ed

cat eF - - - - - - cat
conv cat lrelu 3 128 1 1 1 conv
RES∗ conv - - 128 - - 4 res
conv res lrelu 3 192 1 1 1 conv
conv res lrelu 3 128 1 1 1 conv
cat eB - - - - - - cat

conv conv lrelu 3 128 1 1 1 conv
RES∗ conv - - 128 - - 5 res
RES∗ res - - 128 - - 4 res
conv res lrelu 3 128 1 1 1 eBS

R
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st
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or

conv eBS lrelu 3 128 1 1 1 conv
RES∗ conv - - 128 - - 3 res
conv res lrelu 3 128 1 1 1 conv
UP∗ (res, conv3) - - 128 - - - up
UP∗ (up, conv2) - - 64 - - - up
UP∗ (up, conv1) - - 32 - - - up

conv up lrelu 3 3 1 1 1 conv
sum IB - - - - - - IBS

↓ Pre-defined blocks

R
E

S∗

identity input - - - - - - conv′

conv conv′ lrelu 3 c 1 1
N

conv
conv conv - 3 c 1 1 conv
sum conv′ lrelu - - - - conv′

sum input - - - - - - res

U
P∗

dconv input[0] lrelu 4 c 2 1 1 dconv
sum input[1] - - - - - - sum

RES∗ sum - - c - - 1 res
RES∗ res - - c - - 1 up

Table 5. Detailed network architecture of the baseline model embedded with the disparity map estimator used for the ablation study.



↓ For both training and testing
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conv IB lrelu 3 32 1 1 3 conv1

conv conv1 lrelu 3 64 2 1 1 conv2

conv conv2 lrelu 3 64 1 1 2 conv2

conv conv2 lrelu 3 128 2 1 1 conv3

conv conv3 lrelu 3 128 1 1 2 conv3

conv conv3 lrelu 3 128 2 1 1 conv4

conv conv4 lrelu 3 128 1 1 2 eB

IF
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N

F.E. IB - - - - - - eF

conv eF lrelu 3 128 1 1 1 conv
RES∗ conv - - 128 - - 3 res
conv res lrelu 3 129 1 1 1 conv
conv conv lrelu 3 128 1 1 1 conv

cat eF - - - - - - cat
conv cat lrelu 3 128 1 1 1 conv
RES∗ conv - - 128 - - 2 res
RES∗ res - - 128 - - 2 res
conv res lrelu 3 128 1 1 1 conv
conv conv lrelu 3 128 1 1 1 conv
RES∗ conv - - 128 - - 2 res
RES∗ res - - 128 - - 2 res
conv res - 1 15,232 1 0 1 Fdeblur

IAC (eB , Fdeblur) lrelu 3 128 1 1 17 eBS

R
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or

conv eBS lrelu 3 128 1 1 1 conv
RES∗ conv - - 128 - - 3 res
conv res lrelu 3 128 1 1 1 conv
UP∗ (res, conv3) - - 128 - - - up
UP∗ (up, conv2) - - 64 - - - up
UP∗ (up, conv1) - - 32 - - - up

conv up lrelu 3 3 1 1 1 conv
sum IB - - - - - - IBS

↓ Training only

R
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conv Fdeblur lrelu 3 32 1 1 1 conv
RES∗ conv - - 32 - - 2 res
RES∗ res - - 32 - - 2 res
conv res - 3 357 1 1 1 Freblur

IAC (IS , Freblur) - 3 3 1 1 17 ÎSB

sum IS - - - - - - ISB

↓ Pre-defined blocks

R
E

S∗

identity input - - - - - - conv′

conv conv′ lrelu 3 c 1 1
N

conv
conv conv - 3 c 1 1 conv
sum conv′ lrelu - - - - conv′

sum input - - - - - - res

U
P∗

dconv input[0] lrelu 4 c 2 1 1 dconv
sum input[1] - - - - - - sum
RES∗ sum - - c - - 1 res
RES∗ res - - c - - 1 up

Table 6. Detailed network architecture of the model with the filter predictor and IAC used for the ablation study.
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conv IB lrelu 3 32 1 1 3 conv1

conv conv1 lrelu 3 64 2 1 1 conv2

conv conv2 lrelu 3 64 1 1 2 conv2

conv conv2 lrelu 3 128 2 1 1 conv3

conv conv3 lrelu 3 128 1 1 2 conv3

conv conv3 lrelu 3 128 2 1 1 conv4

conv conv4 lrelu 3 128 1 1 2 eB
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F.E. IB - - - - - - eF

conv eF lrelu 3 128 1 1 1 conv
RES∗ conv - - 128 - - 2 res
RES∗ res - - 128 - - 2 res
conv res - 3 1 1 1 1 dr→l

conv dr→l lrelu 3 128 1 1 1 ed

cat eF - - - - - - cat
conv cat lrelu 3 128 1 1 1 conv
RES∗ conv - - 128 - - 2 res
RES∗ res - - 128 - - 2 res
conv res lrelu 3 128 1 1 1 conv
conv conv lrelu 3 128 1 1 1 conv
RES∗ conv - - 128 - - 2 res
RES∗ res - - 128 - - 2 res
conv res - 1 15,232 1 0 1 Fdeblur

IAC (eB , Fdeblur) lrelu 3 128 1 1 17 eBS
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or

conv eBS lrelu 3 128 1 1 1 conv
RES∗ conv - - 128 - - 3 res
conv res lrelu 3 128 1 1 1 conv
UP∗ (res, conv3) - - 128 - - - up
UP∗ (up, conv2) - - 64 - - - up
UP∗ (up, conv1) - - 32 - - - up

conv up lrelu 3 3 1 1 1 conv
sum IB - - - - - - IBS

↓ Training only
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conv Fdeblur lrelu 3 32 1 1 1 conv
RES∗ conv - - 32 - - 2 res
RES∗ res - - 32 - - 2 res
conv res - 3 357 1 1 1 Freblur

IAC (IS , Freblur) - 3 3 1 1 17 ÎSB

sum IS - - - - - - ISB

↓ Pre-defined blocks

R
E

S∗

identity input - - - - - - conv′

conv conv′ lrelu 3 c 1 1
N

conv
conv conv - 3 c 1 1 conv
sum conv′ lrelu - - - - conv′

sum input - - - - - - res

U
P∗

dconv input[0] lrelu 4 c 2 1 1 dconv
sum input[1] - - - - - - sum
RES∗ sum - - c - - 1 res
RES∗ res - - c - - 1 up

Table 7. Detailed network architecture of our final model.
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(e) our final model with filter predictor, IAC, and disparity map estimator (Table 7)

Figure 15. Network architectures used for the ablation study (Table 1 and Fig. 5 in the main paper). From top to bottom: architectures
for (a) the baseline model, (b) baseline model embedded with the disparity map estimator, (c) proposed IFAN without the disparity map
estimator, and (d) proposed IFAN.
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