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In this document, we describe architecture details of
CaffNet and CaffNet-C, details of implementation and
training, and provide more quantitative and qualitative re-
sults on LRS2, LRS3, and VoxCeleb2 datasets.

1. Network
1.1. Complex-valued Networks

Here we present a brief review of complex-valued net-
works, which can handle complex computations in deep
networks [1, 2, 3]. The complex-valued convolution opera-
tion on the intermediate feature representation h = h,.+h;
with a complex-valued convolutional filter w = w,. + iwy;:

wxh = (h,*x, —h; *w;) +i(h, *w; + h; *w,.), (1)

where w,., w; are real-valued matrices of filter and h,., h,.
are real-valued matrices of complex feature representa-
tion. In practice, complex convolutions can be implemented
as two different real-valued convolution operations with
shared real-valued convolution filters as follows [1], and
activation functions like ReLU were also adapted to the
complex domain. To establish the complex-valued convo-
lutional layer in our networks, we modified 2D complex-
valued convolutional layers [I] into 1D complex-valued
convolutional layers.

1.2. Network Architecture

Our networks are based on V-Conv [4] architecture,
which consists of encoder-decoder architecture. For the
audio-visual encoder, it contains two coupled encoders; an
audio encoder and a visual encoder. In Tab. 1, CaffNet fol-
lows basic configuration of V-Conv [4]. Different from that,

the affinity module is added for audio-visual fusion consid-
ering global and local correspondence between cross-modal
streams. As demonstrated in Tab. 2, CaffNet-C leverages
complex-valued convolutional layers (Conv) in audio en-
coder and mask decoder. For the simplicity, we denote
H(E (D), -+, E(IT4T)) as E¢(I) in Tab. 1 and Tab. 2.

2. Implementation and Training Details

Visual Feature Extraction. Visual features for audio-
visual speech separation represent implicit information cor-
respondent to target speech, i.e. linguistic representation on
lip movements, called viseme. We train the feature extrac-
tor using the strategy of audio-to-video synchronization in
self-supervision. In [5, 6], they build two-stream networks
to embed audio and visual sequences onto a latent space.
In their strategies, when input audio and visual segments
are taken from the same timestamps, the distance between
audio-visual embeddings is minimized, whereas it is maxi-
mized for the segments from different offsets. As a result,
the embedding learns linguistic information commonly ex-
isting on speech sound and lip movements. Especially, we
adopt M -way matching method proposed in [6, 7] for the
representation learning by providing multiple negative sam-
ples over a single positive input,

1 N M
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tween embedding pairs and yy,,, € {0,1} denotes simi-
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Module \ Layer K. Ch. I/O S. P BN Act. Input Output
V-ConvlD 5  512/1536 1 2 v ReLU Er(I) v-featl
Visual Encoder | V-ConvlD (x8) 5 1536/1536 1 2 v ReLU v-featl v-feat9
V-ConvlD 5 1536/1536 1 2 - - v-feat9 Vv
Decompose - 2571257 - - - - X |X|
Audio Encoder A-ConvlD 5 2571536 1 2/ ReLU |X]| a-featl
A-Convl1D (x3) 5 1536/1536 1 2 v ReLU a-featl a-feat4
A-ConvlD 5 1536/1536 1 2 - - a-feat4 S
V-Nonlocal (x2) 5 1536/1536 1 2 v ReLU A% Y
Affinity Module A-Nonlocal (x2) 5 1536/1536 1 2 / ReLU S S
AV-Aff. - 1536/1536 - - - - S,V Vv
Concat. (II) - 1536/3072 - - - - S,V o
Conv1D 5 3072/1536 1 2 v ReLU v m-featl
Mask Decoder ConvlD (x13) 5 1536/1536 1 2 v RelLU m-featl  m-featl4
Conv1D 5 1536/257 1 2 v Sigmoid m-featl4 M
Mult. (®) - - - - - - 1X|, M Y

Table 1: Network configuration of CaffNet. ‘K’, ‘S’ and ‘P’ represents the kernel, stride, and padding size of convolution
layer, and ‘Ch. I/O’ represents channels of input and output relative to the input, respectively. 'B.N’ is the batch normalization

layer and *Act.’ is the activation function.

Module \ Layer K. Ch. I/O S. P BN Act. Input Output
V-ConviD 5  512/1536 1 2 v ReLU Er(I) v-featl
Visual Encoder | V-ConvlD (x8) 5 1536/1536 1 2 v ReLU v-featl v-feat9
V-ConviD 5 1536/1536 1 2 - - v-feat9 A%
A-Conv1D 5 257/1536 1 2 v LReLU X a-featl
Audio Encoder A-ConviD (x3) 5 1536/1536 1 2 v LReLU  a-featl a-feat4
A-ConvlD 5 1536/1536 1 2 - - a-featd S
Decompose - - - - . - S S|, s
V-Nonlocal (x2) 5 1536/1536 1 2 v ReLU A% Y
A-Nonlocal (x2) 5 1536/1536 1 2 v ReLU S| S|
Affinity Module | AV-Aff. - 1536/1536 - - - S|, vV v
Concat. (IT) - 1536/3072 - - - - S|,V | @
Reconstruct - - - - - - |W|, eifs o
ConvlD 5 3072/1536 1 2 v LReLU v m-featl
Mask Decoder ConvlD (x13) 5 1536/1536 1 2 v LReLU m-featl m-featl4
ConvlD 5 1536/257 1 2 - Tanh  m-featl4 M
Mult. (®) - - - - - X, M Y

Table 2: Network configuration of CaffNet-C. ‘K’, ‘S’ and ‘P’ represents the kernel, stride, and padding size of convolution
layer, and ‘Ch. I/O’ represents channels of input and output relative to the input, respectively. 'B.N’ is the batch normalization
layer and *Act.’ is the activation function. ‘LReLU’ indicates LeakyReLLU function with a slope 0.2. Conv denotes complex-
valued convolutional layer. At the last layer of mask decoder, we adopt tanh activation for the magnitude of the estimated

mask.

larity label. In this experiment, we stacked 5 consecutive
visual frames of 224 x 224 pixels with RGB channels as the
visual input, and 20 audio frames as the audio input, where
they are 0.2-seconds length. The architecture configuration
is same as described in [6]. It shows powerful performance
compared to using contrastive loss, and we prepare two vi-

sual feature extractors; one is for LRS2 and LRS3 dataset
and the other is for VoxCeleb2 dataset. We pre-trained vi-
sual feature extractors and not fine-tuned on the separation
task; thus there is still a margin to be improved with joint
training of the extractor and the separator.
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Figure 1: Speech separation performance with respect to each delay offset between audio and visual streams on LRS3 (top)
and VoxCeleb2 (bottom) datasets. The frame offset unit is 40ms which is the duration length between consecutive video

frames.

Training and Optimization We use PyTorch library [&]
and single RTX 24GB to train our networks. The network
parameters are optimized using the mini-batch stochastic
gradient descent (SGD) method. All networks are trained
from scratch and we applied the Adam optimizer [9] with
learning rate 1 x 1072, betal 3; = 0.9, beta2 B = 0.999
and batch size 32. We use PyTorch’s ReduceLROnPlateau
learning rate scheduler with a reduction factor of 0.8 and
a patience parameter of 2 to adapt the learning rate during
training. At each training iteration, we randomly sampled
one audio-video pair and another audio that has a different
identity. We randomly take segments from each audio sig-
nal and add them to make mixture input. Hence, we use
64K training samples for each epoch and all networks are
trained for a total of 50 epochs.

3. More Results
3.1. Quantitative Results

We provide more quantitative results for AVSS perfor-
mance regarding SDR improvement (SDRi) metric con-
cerning varying delay in Fig. 1 on LRS3 and VoxCeleb2
datasets. The results are obtained from CaffNet-C using
predicted magnitude and phase. On the top of Fig. 1, we
report the average SDRi of unseen 1000 speaker samples on
LRS3 dataset. In this experiment, we train CaffNet-C using
LRS2 dataset only, so the network cannot see any samples
of LRS3 at the training stage. At the bottom of Fig. 1, we
provide the average SDRi of unseen 1000 speaker samples
on VoxCeleb2 dataset.
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Figure 2: Qualitative evaluation of affinity matrices and
spectrograms with respect to jitter effect on LRS2 dataset.
The results are obtained from CaffNet-C.
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Figure 3: Qualitative evaluation of spectrograms with respect to the frame delay on LRS2 dataset. (c), (d) and (e) are results
of CaffNet-C. Each row is different testing sample and all results are reconstructed from the predicted magnitude and phase.

0
-3

=)
=)

) )
2 <
Iy )
g* g
g g
[y [

N
N

Time(s)

(a) Mixture (b) V-Conv [4] (-5 delay)

Frequency (kHz)
S (=)
Frequency (kHz)
N o

N
N

0.99
Time(s)

(f) CaffNet (-5 delay)

(e) Source (GT)

-3

=)

4

Frequency (kHz)

N

0.99 X 0.99
Time(s) Time(s)

(c) V-Conv [4] (0 delay) (d) V-Conv [4] (+5 delay)

#
0.495 0.99 1.485 19 0 0.495 0. 1.485 1B
Time(s) Time(s)
(g) CaftNet (0 delay) (h) CaftNet (+5 delay)

Figure 4: Qualitative comparison results of spectrogram estimated by V-Conv [4] and CaffNet on LRS3 dataset. All results
are reconstructed from the combination of estimated magnitude and ground-truth phase.

3.2. Qualitative Results of Spectrograms

We provide more qualitative results of spectrograms.
Fig. 2 shows the examples with and without jitter. Fig. 3
includes the spectrogram results of three different testing
samples. In this experiment, we sample by immobilizing
the audio stream at a certain time and moving the video
segment according to the degree of delay. Although the
video stream does not synchronize exactly with the audio
stream, the results are similarly predicted. In Fig. 4, we
compare the results with V-Conv [4]. These results validate
that the CaffNet are flexible and interpretable for the delay,
thus widely applicable on real-world videos. Fig. 5 demon-

strates the results of spectrograms on VoxCeleb2 dataset.
At the last column in Fig. 5, colored image means the tar-
get speaker and gray-scale image indicates the interfering
speaker. The target speaker’s speech is isolated while the
other’s interfering speech is suppressed.

3.3. Video

Our demo video' includes the examples of videos on
LRS2 dataset, and the examples from real-world news
videos.

"https://youtu.be/9R2qQ7dGTp8
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Figure 5: Examples of speech separation results on VoxCeleb2 dataset. From left to right, each column notes mixed speech,
target speech and separated output. These are randomly selected samples of CaffNet-C with full prediction of magnitude and

phase components.
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