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A. Appendix

A.1. Implementation Details

Classification networks. As mentioned in Section 4 (Ex-
perimental setup), we choose ResNet38 [48] as the back-
bone network of our method with an output stride of 8 for
both PASCAL VOC 2012 [12] and MS COCO 2014 [30].
For COCO 2014 dataset, our method is trained up to 50
epochs with a batch size of 16, where input images are ran-
domly cropped by 321 × 321 and λ is 0.9. Other hyperpa-
rameters are the same as those for Pascal VOC 2012 dataset.

Segmentation networks. We adopt five segmentation net-
works for evaluating PASCAL VOC 2012: 1) VGG16 based
DeepLab-V1, 2) VGG16 based DeepLab-V2, 3) ResNet101
based DeepLab-V1, 4) ResNet101 based DeepLab-V2, and
5) ResNet38 based DeepLab-V1. Following the common
practice in developing the segmentation model, input im-
ages are randomly scaled to [0.5, 0.75, 1.0, 1.25, 1.5] and
cropped to 321 × 321 for training. For inference, test im-
ages are scaled to 513× 513 without cropping. We use the
SGD optimizer with a batch size of 10 (20 for COCO 2014)
and train the networks until 20k iterations(24k for COCO
2014). The initial learning rate is 1e − 3 for segmentation
networks with VGG16 and ResNet38 and 2.5e− 4 for seg-
mentation networks with ResNet101. We follow the poly
policy lriter = lrinit(1 − iter

maxiter
)γ with γ = 0.9 for a

learning rate decay. We set the momentum as 0.9 and the
weight decay term as 5e − 4. All the segmentation net-
works are implemented on PyTorch [36] and trained using
two NVIDIA GeForce RTX 2080Ti GPUs.

∗indicates an equal contribution.
†Hyunjung Shim is a corresponding author.

λ 0.0 0.25 0.5 0.75 1.0

mIoU (%) 68.2 68.5 69.4 69.9 69.5

Table A.1. Effects of λ on the pseudo-mask generation. The per-
formance (mIoU) of pseudo-masks is reported under various λ.
The results are evaluated on the PASCAL VOC 2012 train set.

τ 0.2 0.3 0.4 0.5

mIoU (%) 68.3 68.9 69.4 69.1

Table A.2. Effects of τ on the pseudo-mask generation. The per-
formance (mIoU) of pseudo-masks is reported under various τ .
The results are evaluated on the PASCAL VOC 2012 train set.

A.2. Effect of the Hyperparameters

In this section, we analyze how two hyperparameters, λ
and τ , affect the quality of the pseudo-masks. From Equa-
tion (1), we used λ to adjust the ratio between the fore-
ground map Mfg and the background map Mbg in com-
puting the estimate of saliency map M̂s. Specifically, the
larger the λ, the more the foreground map affects estimating
the saliency map. (When λ is set to 1.0, only the foreground
map affects estimating the saliency map.) Table A.1 shows
the quality of the pseud-masks on PASCAL VOC 2012 de-
pending on λ. These results indicate that the best perfor-
mance is achieved at 0.75, and the performance is robust
as long as the value is within 0.5 < λ < 1.0. This implies
that relying more on the foreground map is generally a good
choice, but the overall performance is not sensitive to the
choice of λ. For all the experiments in this paper, we set λ
to 0.5 for PASCAL VOC 2012 (not optimal but sufficiently
good) and 0.9 for MS COCO 2014 in our experiments.

From Equation (2), τ is defined as the threshold to con-
trol whether the localization map should be assigned to the



Class Naı̈ve Pre-defined Our adaptive

bkg 89.3 89.8 90.1
aero 78.9 80.1 82.9
bike 42.0 43.8 42.5
bird 79.4 79.7 80.5
boat 72.3 72.7 72.8
bottle 70.2 70.4 69.4
bus 79.9 80.3 82.1
car 75.8 75.3 78.9
cat 78.2 77.9 82.8
chair 29.6 31.0 33.1
cow 77.5 78.5 80.1
table 30.2 47.1 43.4
dog 78.7 78.9 79.6
horse 81.5 81.3 81.4
mbk 79.0 79.5 80.5
person 76.0 76.5 76.7
plant 46.8 46.1 52.0
sheep 80.6 79.8 80.8
sofa 28.6 37.6 39.9
train 71.4 71.5 77.8
tv 50.4 48.6 50.7

mean 66.5 67.9 69.4

Table A.3. Effects of different map selection strategies. The per-
formances (mIoU) of pseudo-masks per class are evaluated on
PASCAL VOC 2012 train set.

foreground or the background map. The larger the τ , the
more likely the localization map is assigned to the back-
ground map. In Table A.2, we present the performance of
the pseudo-masks over τ . These results clearly showcase
that our method is robust against the choice of τ , especially
between 0.2 and 0.5. By default, we set τ = 0.4 for both
PASCAL VOC 2012 and MS COCO 2014 in our experi-
ments.

A.3. Effect of the Map Selection Strategy

In Section 5.2, we showed the effectiveness of our map
selection strategy. For the detailed analysis, we evaluate
the per-class IoU of the pseudo-masks upon map selec-
tion strategies. The results are summarized in Table A.3.
As witnessed by the results in Table 3 of Section 5.2, the
naı̈ve strategy shows poor performances in several classes
(i.e. chair, dining table, and sofa). Because the pre-defined
class strategy excludes above mentioned classes (having
poor performances when assigned to the foreground map),
it performs better than the naı̈ve strategy. However, it re-
quires a manual selection and thus less practical. Lastly,
our adaptive method generally achieves more accurate re-
sults without any manual interactions.

(a) (b) (c) (d)
Figure A.1. Boundary quality of pseudo-masks. We qualitatively
evaluate our method in terms of the boundary quality on SBD
trainval set. (a) Input images, (b) groundtruth, (c) pseudo-masks
from our EPS and (d) boundary maps from our EPS.

A.4. Examples of Boundary Maps

To show the boundary quality of pseudo-masks, we fo-
cus on the object boundaries for evaluation. We compare
boundary maps extracted from the pseudo-masks. Specifi-
cally, we obtain the boundary maps for all target objects by
applying the Laplacian edge detector, and then aggregate
them for generating a class-agnostic boundary map. Fig-
ure A.1 shows the results of boundary maps and their corre-
sponding pseudo-masks from our EPS. These results show
that our EPS is more effective to learn the boundaries.

A.5. Analysis on the Co-occurrence Problem

In Section 5.1, we showed that our method resolves the
co-occurrence problem. We quantitatively analyze 1) which
background classes frequently occur with the target objects
and 2) whether or not our EPS alleviates the co-occurrence
problem in additional co-occurring pairs.

First, in order to analyze which background pixels are
coincident with target objects, we utilize the PASCAL-
CONTEXT dataset, which has thorough labels of PASCAL
VOC 2011 dataset. We adopt the labels (e.g., sky, water, and
road more than 400) of PASCAL-CONTEXT and use those
labels to compute the co-occurring frequencies between the
target classes and the background pixel in PASCAL VOC
dataset. (Here, we term the additional classes only in the
PASCAL-CONTEXT dataset as context classes.) As shown
in Figure A.2, we calculate the co-occurrence frequencies



Figure A.2. Co-occurrence matrix between labels of PASCAL
VOC 2012 and those of PASCAL-CONTEXT. Each entry repre-
sents the co-occurrence ratio for the appearance of the target label
in PASCAL VOC 2012.

Method
car w/ car w/ cat w/
road sidewalk bedclothes

CAM [55]CVPR’16 0.18 (46.4) 0.04 (51.4) 0.12 (41.9)
SEAM [44]CVPR’20 0.15 (54.6) 0.06 (51.1) 0.09 (62.2)
ICD [13]CVPR’20 0.09 (58.9) 0.03 (59.1) 0.14 (74.0)
SGAN [50]ACCESS’20 0.10 (41.9) 0.03 (45.7) 0.04 (68.3)
Our EPS 0.04 (69.7) 0.01 (72.1) 0.06 (76.3)

Table A.4. Comparison with representative existing methods han-
dling the co-occurrence problem. Here, we present additional pairs
which are not covered in the main text. Each entry is mk,c in blue
(the lower the better) and IoU in the bracket (the higher the better).

between the target classes and the context classes. We
choose 12 context classes which have target classes with
thg high co-occurrence frequencies and a low standard devi-
ations. (A low standard deviation indicates that the context
label does not co-occur with a particular target label.) Note
that each entry in Figure A.2 represents a ratio of images in
which co-occurrence occurs among images of target class.
Note that we exclude dining table because it is divided into
more detailed labels in the PASCAL-CONTEXT dataset.
Finally, we choose three pairs of classes used in Section 5.1
(train and railroad, train and platform, and boat and water)
because they show highest co-occurring frequencies. Addi-
tionally, car and road, car and sidewalk, and cat and bed-
clothes also co-occur. In Table A.4, we present that the con-
fusion ratio and the class IoU of the additional co-occurring
pairs. Our method still shows the lowest confusion ratio ex-
cept for the pair, cat and bedclothes and the highest IoU.

Method Sup. val test

AffinityNet [2]CVPR’18 I. 61.7 63.7
SEAM [44]CVPR’20 I. 64.5 65.7

Our EPS I.+S. 68.9 70.0

Table A.5. Segmentation results (mIoU) on PASCAL VOC 2012.
All the results are based on ResNet38.

Class
our EPS our EPS our EPS

(VGG16) (ResNet38) (ResNet101)

bkg 90.7 91.4 91.7
aero 86.1 87.3 89.4
bike 34.5 38.4 40.6
bird 82.8 85.9 84.7
boat 65.3 65.4 67.0
bottle 65.6 72.0 71.6
bus 82.4 86.5 87.8
car 77.3 79.2 82.7
cat 83.0 86.1 87.4
chair 30.1 31.2 33.6
cow 73.9 75.1 81.9
table 40.1 36.1 37.3
dog 77.6 80.9 82.5
horse 74.4 76.9 82.9
mbk 70.6 74.5 76.6
person 78.9 80.6 82.8
plant 46.7 55.0 54.0
sheep 75.2 76.8 79.7
sofa 36.2 38.5 39.1
train 81.4 82.1 85.4
tv 45.3 47.2 51.7

mean 66.6 68.9 71.0

Table A.6. Per-class segmentation results (mIoU) on PASCAL
VOC 2012 val set.

This demonstrates that our method effectively handles the
co-occurrence problem.

A.6. Additional Segmentation Network

In Section 5.3, we evaluate the segmentation accuracies
on the four segmentation backbone networks. Here, we
adopt an additional backbone network i.e., ResNet38 [48]
for the segmentation model to compare with SEAM [44].
As shown in Table A.5, EPS outperforms the AffinityNet [2]
and SEAM with a large margin and this demonstrates the
superiority of EPS.

A.7. Per-class Performance

For PASCAL VOC 2012 validation set and test set,
Table A.6 and Table A.7 show the per-class IoU of
the segmentation results over various backbone models
(i.e., VGG16, ResNet38 and ResNet101). Here, we
adopt DeepLab-LargeFOV (V1) as a segmentation network.
When our EPS employs a strong backbone model, i.e.,



Class
our EPS our EPS our EPS

(VGG16) (ResNet38) (ResNet101)

bkg 91.1 91.6 91.9
aero 85.3 87.7 89.0
bike 36.9 37.8 39.3
bird 84.5 87.1 88.2
boat 54.2 59.5 58.9
bottle 64.0 68.7 69.6
bus 82.5 84.1 86.3
car 79.2 80.1 83.1
cat 84.9 83.9 85.8
chair 31.7 34.0 35.0
cow 69.4 73.8 83.6
table 46.3 43.1 44.1
dog 80.2 80.8 82.4
horse 73.2 80.1 86.5
mbk 79.1 79.0 81.2
person 78.5 80.1 80.8
plant 56.0 63.0 56.8
sheep 81.5 83.0 85.2
sofa 44.1 47.4 50.5
train 77.0 76.4 81.2
tv 45.4 48.2 48.4

mean 67.9 70.0 71.8

Table A.7. Per-class segmentation results (mIoU) on PASCAL
VOC 2012 test set.

ResNet101, it tends to show the best performance in both
validation and test sets.

A.8. Qualitative Examples

Figure A.3 shows more examples of estimated saliency
maps from our EPS. Despite the noisy of the saliency maps,
the estimated saliency maps capture the full extent of the
target objects. But, it fails at capturing indistinguishable
objects and captures confusing objects. Figure A.4 and Fig-
ure A.5 show more examples and failure cases of pseudo-
masks and segmentation results from our EPS on PASCAL
VOC 2012. Our method effectively addresses the three
challenges of WSSS, but there are some failure cases: 1)
shape bias, 2) confusing objects, and 3) indistinguishable
shape. Figure A.6 shows more examples and failure cases
of segmentation results in our EPS on MS COCO 2014.
Our method shows fine results, but it fails at separating
the confusing objects or capturing indistinguishable object,
and hardly captures the small objects in images with a large
number of objects.



(a) (b) (c) (d) (a) (b) (c) (d)

Figure A.3. Quality of estimated saliency maps on PASCAL VOC 2012. (a) Input images, (b) groundtruth, (c) saliency maps from
PFAN [54] and (d) our estimated saliency maps. Our estimated saliency maps contain the target objects well along the saliency map
(1st-2nd rows). Although the saliency maps have missing and noisy information, our results successfully restore missing objects (3rd-4th
rows) and remove the noise (5th-6th rows). The last two rows show some failure cases.



(a) (b) (c) (d) (a) (b) (c) (d)

Figure A.4. Quality of pseudo-masks resolving the key challenges of WSSS on PASCAL VOC 2012 train set. (a) Input images, (b)
groundtruth, (c) CAM and (d) our EPS. Our EPS effectively addresses the three challenges of WSSS: 1) sparse object coverage (1st-2nd
rows), 2) boundary mismatch (3rd-4th rows), and 3) co-occurrence problem (5th-6th rows). The last two rows show some failure cases of
pseudo-masks.



(a) (b) (c) (d) (a) (b) (c) (d)

Figure A.5. Qualitative examples of segmentation on PASCAL VOC 2012. (a) Input images, (b) groundtruth, (c) our EPS with USPS [34]
(the unsupervised saliency detection model) and (d) our EPS with PFAN [54] (the fully supervised saliency detection model). In each cases,
both results are close to each other and do not differ much from the groundtruth. In general, the results with PFAN performs slightly better
than the results with USPS. However, in some cases, the results with USPS are better (e.g., a person’s arm or leg). The last three rows show
some failure cases: 1) shape bias (e.g., tv/monitor), 2) confusing objects (e.g., cow and horse, chair and sofa), and 3) indistinguishable
shape (e.g., sofa on which a cat sits).



(a) (b) (c)(a) (b) (c)

Figure A.6. Qualitative examples of segmentation on MS COCO 2014. (a) Input images, (b) groundtruth and (c) our EPS. The left column
shows fine results of our EPS. The right column shows some failure cases: 1) confusing objects (e.g., couch and chair and remote and
cell phone), 2) indistinguishable objects (e.g., couch where a person sits), 3) small objects, and 4) a large number of objects. Each case is
represented on each of the two rows.


