
Regularization Strategy for Point Cloud via Rigidly Mixed Sample
Supplementary Material

Dogyoon Lee1 Jaeha Lee1 Junhyeop Lee1 Hyeongmin Lee1 Minhyeok Lee1

Sungmin Woo1 Sangyoun Lee1∗

1Yonsei University
{nemotio,jaeha0725,jun.lee,minimonia,hydragon516,smw3250,syleee}@yonsei.ac.kr

A. Implementation Details
We implemented RSMix with Nvidia RTX 2080Ti GPU using released codes from PointNet++ [6] and DGCNN [7] us-

ing TensorFlow [1] and PyTorch [4], respectively. We adopted original configurations of released codes except a training
epoch for DGCNN [7]. Specifically, for PointNet [5] and PointNet++ [6], we adopted 1024 points without normals, batch
size= 16, and training epoch= 250 using Adam optimizer [3] with initial learning rate= 0.001, decay rate= 0.7, and de-
cay step= 200000. For DGCNN [7], we also adopted 1024 points without normals, batch size= 32, k= 20, and training
epoch= 500 using SGD solver with momentum= 0.9 and initial learning rate= 0.1, which decays according to a cosine
annealing strategy [2]. In addition, we adopted four conventional augmentations: jitter(σ2 = 0.01); scaling(0.8 ∼ 1.25);
shifting(range= 0.1); and y-axis rotation i.e. gravity, when training the networks as we mentioned in our paper. For Drop-
Point, we applied drop ratio(= 0 ∼ 0.875) as same as PointNet++ [6]. Lastly, we applied RSMix with a probability of 0.5.

B. Visualized Samples
Figure 1 shows qualitative results of mixed samples with RSMix. Yellow and purple parts indicate Rigid Subsets (RSs) to

be extracted from the each sample to generate mixed samples, which comprise of red and green parts of point clouds. Visual-
ization demonstrates that RSMix successfully transfers semantic structural information of the each sample to the synthesized
virtual sample by preserving shape of original data.

Figure 1: Qualitative results of mixed samples with RSMix. Yellow (left) and purple (right) colors indicate Rigid Subsets
from each samples to generate virtual mixed samples (middle), which are comprised of red and green colors, respectively.

C. Rigid Subset Mix Algorithm
This section presents three simple code-level pseudo-codes to explain our algorithm in detail.

C.1. Overall Algorithm

Algorithm 1 describes the overall algorithm of RSMix. B, N, and C denote the size of minibatch data Pα
batch, the cardi-

nality (| · |) of each point sets, and information of each point, which includes three-dimensional coordinate and features.
First, we sample the rrigid for RSMix from beta distribution Beta(θ, θ). Then we randomly shuffle the order of the input

minibatch data Pα
batch and label Lα

batch along the first axis of the tensors to generate paired minibatch data Pβ
batch and Lβ

batch.
Second, we create empty minibatch data Pα

mix,batch and mixture ratio λ to store outputs processed through RSMix algorithm.
Third, we find coordinates of query points qα and qβ , whose indices qαidx and qβidx are randomly sampled from Pα

batch and
Pβ
batch. We also explore indices of neighbored points, Sα

idx and Sβ
idx, through Neighboring Rigid Subset Algorithm (Algo-

rithm 2). Lastly, we extract Rigid Subsets (RSs) from given samples and mix them to generate virtual data Pα
mix,batch and λ,

mixed and stored informations with Extraction & Insertion algorithm (Algorithm 3).

Algorithm 1 Overall Rigid Subset Mix Algorithm
1: During Training,
2: Input: Pα

batch, Lα
batch, θ(usually 1.0) ⊲ Pα

batch : input = (B×N×C), Lα
batch : Label = (B×1), where C is 3 or 6(w/ Normal).

3: Output: Pα
mix,batch, Lα

batch,Lβ
batch,λ ⊲ Pα

mix,batch : Mixed data(B×N×C), Lα
batch : Original label(B×1), Lβ

batch : Mixed label(B×1).
4: ⊲ λ:(B,).
5: if RSMix == True then
6: rrigid = Beta(θ, θ)
7: Pβ

batch, Lβ
batch= batch wise random shuffle(Pα

batch, Lα
batch)

8: Pα
mix,batch, λ Create ⊲ Pα

mix,batch :(B×N×C), λ :(B,) are empty: to store mixed data and lambda.

9: qαidx, qβidx = Randomly sampled indices from Pα
batch, Pβ

batch ⊲ Randomly choose query points and save indices. (B,).

10: Sα
idx, qα =Neighboring Rigid Subset Algorithm(Pα

batch, qαidx, rrigid, nmax) ⊲ Note: nmax == N
2

.

11: Sβ
idx, qβ =Neighboring Rigid Subset Algorithm(Pβ

batch, qβidx, rrigid, nmax) ⊲ Sα
idx, Sβ

idx : Masked indices. (B×1×nmax).
12: ⊲ qα, qβ : query points. (B×1×C).

13: Pα
mix,batch,λ =Extraction & Insertion Algorithm(Sα

idx,S
β
idx,P

α
batch,P

β
batch, qα, qβ , rrigid, nmax,Pα

mix,batch,λ)

14: return Pα
mix,batch, L

α
batch, L

β
batch,λ

15: end if

C.2. Neighboring Rigid Subset

We implemented a neighboring algorithm using loop structure and batch-wise computation.
First, we specify exact coordinates of query points q from qidx and Pbatch using for-loop. Second, we extract indices of

neighbored points through neighboring functions Aball or Aknn. Each function computes adjacencies of points from query
points q using function Query ball with rrigid, which is implemented on PointNet++ [6] and K-Nearest Neighbor(KNN) with
ksample, respectively. Specifically, Query ball function extracts indices of the points within the distance rrigid from a query
point q[i][0]. Neighboring algorithm is implemented with batch-wise computation for effectiveness of RSMix.

Algorithm 2 Neighboring Rigid Subset Algorithm
1: Input: Pbatch, qidx, rrigid, nmax ⊲ Pbatch : input = (B×N×C), qidx : (B,),rrigid, nmax : scalar.
2: Output: Sidx, q ⊲ Sidx :Masked indices (B×1×nmax), q :query point (B×1×C).
3:
4: q = (B×1×C) empty data create
5: for i =1, 2, . . . , B do
6: q[i][0]=Pbatch[i][qidx[i][0]] ⊲ Initalize query point value.
7: end for
8: if A == Aball then ⊲ Query ball function of PointNet++ [6].
9: Sidx = Query ball(Pbatch, qidx, rrigid, nmax)

10: else if A == Aknn then ⊲ KNN function manually revised from query ball function of PointNet++ [6].
11: ksample = nmax × rrigid ⊲ ksample: the cardinality of neighboring point set.
12: Sidx = KNN(Pbatch, qidx, ksample, nmax)
13: end if
14: return Sidx, q

C.3. Extraction & Insertion
Algorithm 3 describes the Extraction & Insertion process in detail. As we defined a label mixture ratio λ into three cases

in our paper, Extraction & Insertion algorithm is implemented with the three branches to deal with the cases. Notations in
below algorithm 3 are identical to those of above algorithm 1 except new ones in algorithm 3.

First of all, we pre-compute qdist, which are translation vectors for each batch data to insert a RS Sβ to a RS Pα
batch[i]−Sα

, with only coordinate information. Due to different cardinalities of each neighbored point set in batch, which are extracted
through above algorithm 2, we process the Extraction & Insertion using for-loop, since it is hard to apply the batch-wise
computation. In addition, the algorithm is divided into three branches as we mentioned above: Sα

idx[i][0][0] ==N; Pα =
SαN; and otherwise, which are same as three cases in our paper: Pα = Sα; Sβ = ∅; and otherwise, respectively.

For first case, we use an original data Pα
batch[i] as processed data Ptmp intactly and define a corresponding mixture ratio

λtmp = 0. For second case, we use an extracted subset Pα
batch[i]−Sα as processed data Ptmp randomly duplicating points in

Pα
batch[i]−Sα to maintain a cardinality of the point set as N, since there is no point in RS Sβ and we also set λtmp = 0. This

strategy also make RSMix can cover an additional case of partially-removed samples. For last case, before insertion, we have
to control the |Sβ | as much as difference between |Sβ | and |Pα

batch[i]−Sα|, since they are usually different. We introduce
random sampling or duplicating points in the Sβ to preserve overall shapes of extracted samples. Finally, we generate a
mixed sample Ptmp by inserting Sβ to Pα

batch[i]−Sα using pre-computed vector qdist with ith index. For label mixture ratio
λtmp in this case, we set it as the ratio of |Sβ | w.r.t. |Ptmp|(= |Pα

batch[i]−Sα|). This temporal mixed data Ptmp and mixture
ratio λ are successively saved to already created container Pα

mix,batch and λ. Therefore, we effectively generate virtual mixed
data Pα

mix,batch and corresponding mixture ratio λ.

Algorithm 3 Extraction & Insertion Algorithm

1: Input: Sα
idx,S

β
idx,P

α
batch,P

β
batch, qα, qβ , rrigid, nmax,Pα

mix,batch,λ ⊲ Same notations as defined in above algorithms.
2: Output: Pα

mix,batch,λ
3:
4: qdist = qα[:, :, :3]−qβ [:, :, :3] ⊲ To translate the extracted subset to another extracted subset
5: for i =1, 2, . . . , B do
6: if Sα

idx[i][0][0]==N then ⊲ Because mask values for indices are N, which is the original cardinality of point set in each batch.
7: Ptmp =Pα

batch[i] ⊲ if Sα
idx[i][0][j] ==N, that means that a point Pα

batch[i][j] is out of neighboring function.
8: λtmp =0
9: else if Sβ

idx[i][0][0]==N then ⊲ | · | : Cardinality of point cloud.
10: Sα

idx = Sα
idx[i] with removing invalid indices ⊲ Filter the indices to extract Rigid Subset Sα from Pα

batch[i].
11: Pα

batch[i]−Sα =Remove elements whose indices are in Sα
idx from Pα

batch[i] ⊲ Extract Pα
batch[i]−Sα :(|Pα

batch − Sα|×C).
12: Pα

batch[i]−Sα = Randomly duplicate the points in Pα
batch[i]−Sα as much as length of Sα

idx ⊲ To maintain cardinality of point set as N.
13: Ptmp =Pα

batch[i]−Sα ⊲ Ptmp : (B×N×C).
14: λtmp =0
15: else
16: Sα

idx = Sα
idx[i] with removing invalid indices

17: Sβ
idx = Sβ

idx[i] with removing invalid indices ⊲ Filter the indices to extract Rigid Subset Sβ from Pβ
batch[i].

18: if |Sα
idx| == |Sβ

idx| then

19: Sβ
idx,ctrl = Sβ

idx

20: else if |Sα
idx| > |Sβ

idx| then
21: Sβ

idx,ctrl =Randomly duplicate the indices in Sβ
idx as much as (|Sα

idx|− |Sβ
idx|)

22: else
23: Sβ

idx,ctrl =Randomly sample the indices in Sβ
idx as much as (|Sα

idx|)
24: end if
25: Pα

batch[i]−Sα =Remove elements whose indices are in Sα
idx from Pα

batch[i] ⊲ Pα
batch[i]−Sα :(|Pα

batch[i]−Sα|×C)

26: Sβ =Take elements whose indices are in Sβ
idx,ctrl from Pβ

batch[i] ⊲ Sβ :(|Sβ |×C).
27: Sβ [:, :3]= qdist[i]+Sβ [:, :3] ⊲ Translated Rigid Subset.
28: Ptmp =Concatenate(Pα

batch[i]−Sα, Sβ) ⊲ Ptmp : (B×N×C)

29: λtmp =
|Sβ |

|Pα
batch[i]− Sα|+ |Sβ |

⊲ |Pα
batch[i]− Sα|+ |Sβ | =N in this case.

30: end if
31: Pα

mix,batch[i][:, :] = Ptmp[:, :]

32: λ[i] = λtmp

33: end for
34: return Pα

mix,batch,λ

References
[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey

Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[2] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q. Weinberger. Snapshot ensembles: Train 1, get M
for free. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017.

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
[4] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca

Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.
[5] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d classification and segmenta-

tion. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 652–660, 2017.
[6] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning on point sets in a metric

space. In Advances in neural information processing systems, pages 5099–5108, 2017.
[7] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon. Dynamic graph cnn for learning

on point clouds. Acm Transactions On Graphics (tog), 38(5):1–12, 2019.

