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Figure 1: Aligned MS generation by correlation maximization

1. Aligned MS generation

To evaluate the degree of distortion of PS output images,
the aligned MS images should be generated from the mis-
aligned MS images. This is because the proposed SIPSA-
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Net is designed to correct the location of misplaced colors in
MS images. Therefore, it is more proper to evaluate the per-
formance using the aligned MS images rather than the origi-
nal skewed MS images. The aligned MS images are created
from the perspective of correlation maximization between
the PAN and aligned MS image pair.



Figure 2: Pan-sharpened images of pan-sharpening methods including SIPSA-Net.

The procedure of generating an aligned MS image is de-
picted in Fig. 1. First, the MS image to be aligned is con-
verted to grayscale to match the channel with the PAN im-
age. Then for each pixel location of the PAN image, we
replace the current pixel with the optimal MS pixel that
is aligned to the shape of the PAN through the correlation
score maximization process. For a single-pixel location on
the PAN image, let us assume that there is a patch with size
27 × 27 having dilation of 4 which has the center pixel lo-
cated at the current pixel location. Then on the correspond-
ing position at the grayed MS image, consider a patch with
size 27 × 27 which has the center pixel located at the same
pixel location. Then, we have two patches of the same size,
one from the PAN image and the other from the grayed MS
image. The correlation value is calculated between the two
patches from the PAN image and grayed MS image.

The sliding window in the MS image is moved within
the searching range of size 7 × 7 around the center pixel.
Overall, for a single patch (single-pixel) on the PAN im-
age, 49 patches within the search range (7 × 7) are used
for calculating the correlation value with the patch from the
PAN image. Then, the MS patch with the highest correla-
tion value is selected, and the center pixel of the MS patch
is selected as the optimal MS pixel. The searching process
is repeated for all pixel positions of the PAN images. The
aligned MS images of the PAN scales will then be used to
evaluate the degree of spectral distortion of pan-sharpened
images.

Table 1: QNR [1] and JQM [7] comparison (measured with
original misaligned MS and aligned MS images).

with aligned MS with misaligned MS
QNR ↑ JQM ↑ QNR ↑ JQM ↑

P+XS [2] 0.860 0.921 0.869 0.919
Variational [4] 0.894 0.913 0.902 0.926
PanNet [9] 0.836 0.883 0.844 0.891
PanNet-S3 [3] 0.947 0.947 0.939 0.941
DSen2 [6] 0.848 0.894 0.856 0.900
DSen2-S3 [3] 0.898 0.956 0.889 0.947

SIPSA-Net (full) 0.899 0.962 0.890 0.955
SIPSA-Net (w/o SiS) 0.954 0.951 0.947 0.955

2. Analysis and Comparison of QNR and JQM

In this paper, we measure two no-reference metrics, joint
quality measure(JQM) [7] and quality with no-reference
(QNR) [1]. Several previous works have pointed out its
drawbacks and unexpected properties [5, 7, 8], especially
when perfect alignment between the MS and PAN images
is not assured. As known, PAN and MS images in the
WorldView-3 dataset are not well-aligned, so the values of
the QNR metric does not correlate well with the observed
visual quality. We also have intensively investigated this
discrepancy between QNR metric and subjective quality for



PS output. As shown in Fig. 2, SIPSA-Net has better per-
ceived visual quality than the SIPSA-Net trained without
the SiS loss. SIPSA-Net (w/o SiS) suffers from the arti-
fact that comes from the misaligned MS colors, as shown in
the red boxes in Fig. 2. However, in Table 1, SIPSA-Net
(w/o SiS) has higher QNR values when measured with both
aligned and misaligned MS images. This is not coincident
with the human perceived visual quality.

The inconsistency between QNR metric and perceptual
visual quality comes from that QNR does not directly take
account the spectral and spatial distortions when calculat-
ing the metric [1]. In order to remedy this problem, we ad-
ditionally adopted another metric (JQM) which is known to
be better agreed with the perceived visual quality on PS im-
ages [7]. As shown in Fig. 2, it can be easily noticed that the
values of the JQM metric are very well agreed with the per-
ceived visual qualities of the PS output. The PS results from
DSen2-S3, PanNet-S3, and SIPSA-Net (full) have better vi-
sual quality compared to the others. The JQM metric shows
higher values for the results from those methods, showing
a similar tendency with perceived visual quality. Also, the
PS output by our SIPSA-Net yields the highest JQM score,
which is coincided with the perceived visual quality.

We analyze QNR and JQM for comparison, which can
help understand why JQM is better correlated with percep-
tual visual quality than QNR.

2.1. Basis Functions of QNR and JQM

QNR utilizes the Q index as a basis function when mea-
suring the difference between two images to be compared.
The quality index Q between a reference original image x
and a distorted image y is defined as:

Q(x, y) =
σxy

σx · σy
× 2µxµy
µ2
x + µ2

y

× 2σxσy
σ2
x + σ2

y
(1)

where µx, µy are means, σx, σy are standard deviations,
and σxy is covariance for two image patches x, y. The first
term (σxy/σxσy ) is the correlation coefficient between x
and y. The second term is always less than 1, from Cauchy-
Schwartz inequality, and is sensitive to the bias in the mean
of y with respect to x. The third term is also less than 1
and accounts for relative changes in the contrast between x
and y. Q index has a dynamic range of [-1, 1], and the best
value of Q = 1 is achieved iff x = y for all pixels.

JQM utilizes composite measure based on means, stan-
dard deviations and correlation coefficient (CMSC), which
is translation invariant with respect to means and standard
deviations, thus enhanced over Q index. CMSC for a refer-
ence original image x and a distorted image to be tested y
is defined as:
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where R = 28 − 1 = 255 for 8-bit data.

It should be noted that both QNR and JQM share an idea
of measuring two different types of distortion (spectral dis-
tortion and spatial distortion) and merging these two dis-
tortion index values to obtain a final quality score for a PS
image.

2.2. Spectral Distortion Index

First, we now compare the two spectral distortion terms
of QNR and JQM. Spectral distortion of a PS image is mea-
sured with respect to an original input MS image. However,
there exists a scale difference between the PS and MS im-
ages. Therefore, one should match the scale between them
by upscaling the MS image or downscaling the PS image to
calculate some metric.

The spectral distortion measure of QNR, Dλ, avoids
downscaling of the PS image by comparing inter-band Q
values, separately for both the MS and PS images which
have different resolutions. Dλ is defined as follows:

Dλ =
1

N(N − 1)

N∑
l,k=1

|Q(MSl,MSk)−Q(PSl, PSk)|

(3)
where N is the number of bands. It should be noted for Eq.
3 that Dλ does not directly measure the spectral difference
between the MS and PS images, but indirectly calculates it
in terms of the difference between the inter-band Q values
of the MS and PS images. Unfortunately, the evidence or
proof that such inter-band relations hold between resolution
scales is not studied intensively.

On the other hand, the JQM’s spectral distortion index,
called quality measure at low resolution (QLR), is defined
in a low-resolution scale that makes a direct comparison be-
tween MS and PS images. QLR is defined as follows:

QLR =
1

N

N∑
k=1

CMSC(MSk, PSk,lpf↓) (4)

PSk,lpf↓ = (PSk ∗ lpfk) ↓ (5)

where lpfk is a Gaussian low pass filter, ∗ is a convolu-
tion operator, and ↓ indicates a down-scaling operation. As
indicated in Eq. 4, the QLR of JQM directly reflects the
spectral difference between the MS and PS images, as op-
posed to Dλ of QNR with the difference of the inter-band
spectral differences.



Figure 3: PS result images from the ablation study on SiS loss and FAM

Figure 4: PS result images from the ablation study on SiS loss and FAM

2.3. Spectral Distortion Index

Next, we now compare the two spatial distortion terms
of QNR and JQM. The spatial distortion of a PS image is to
measure how much a pan-sharpening method can maintain
the sharpness of the input PAN image in the PS output im-
age. Therefore, the spatial distortion is measured between
the PS and PAN images. However, the number of bands is
different between the PS image (3 channels) and the PAN
input image (1 channel). Therefore, one should fuse all
three bands of the PS image to a single band and then mea-
sure the spatial distortion between them, or may measure
the spatial distortion for each band of the PS image with the
PAN image and then take a weighted sum to obtain a single
value.

The spectral distortion measure of QNR, DS , compares
inter-band Q index values in a pairwise manner: between
the PS and PAN images, and the MS image and a low-pass-
filtered and downscaled PAN image. DS is defined as fol-
lows:

DS =
1

N

N∑
k=1

|Q(MSk, PANlpf↓)−Q(PSk, PAN)|

(6)
where PANlpf↓ = (PAN ∗ lpf) ↓ . In Eq. 6,
it is worthwhile to note that the first spatial relation
Q(MSk, PANlpf↓) is measured in terms of the difference
between the two relations: the first relation is the Q index
between each channel of the MS image and the low-pass-
filtered and downscaled PAN image; and the second relation
is the Q index between each channel of the PS image and

the PAN image. Likewise for Dλ, DS does not directly re-
flect the spatial distortion between the PS and PAN images
at the full (PAN) resolution. Unfortunately, the evidence
or proof that such a comparison of different spectral bands
(narrow multispectral band and broad panchromatic band)
is legitimate is not well studied.

On the other hand, the JQM’s spatial distortion index,
called quality measure at high resolution (QHR), is defined
at a high (PAN) resolution scale that makes a direct com-
parison between the PAN image and an intensity image cal-
culated as a weighted sum of the PS image channels (as a
simulated PAN image). QHR is defined as follows:

QHR = CMSC(PAN,

N∑
k=1

wk · PSk) (7)

where wk is a spectral response weight for the band k,
which is calculated from spectral response functions of a
data provider. As indicated in Eq. 7, the QHR of JQM di-
rectly reflects the spatial difference between the PAN and
PS images, as opposed to DS of QNR with the difference
between the two relations: MS-PANlpf↓ and PS-PAN.

2.4. Joint Quality Measures Based on Spectral and
Spatial Index

Finally, QNR is defined as a product of two separate
measure presented in 3 and 6 as

QNR = (1−Dλ) · (1−Ds) (8)

whereas JQM is defined as a weighted sum of separate mea-
sures presented in Eqs. 4 and 7 as



Figure 5: Result images for alignment and pan-sharpening using our SIPSA-Net with global misaligned MS and PAN image
pair.

Figure 6: Result images for alignment and pan-sharpening using our SIPSA-Net with locally misaligned MS and PAN image
pair.

JQM = v1 ·QLR+ v2 ·QHR (9)

where v1+v2 = 1, and the weights are set to v1 = v2 = 0.5
as a default.

As described so far, the spectral distortion index (Dλ)
of QNR is indirectly obtained by taking the difference be-
tween inter-band similarity measures of the MS and pan-
sharpened images [1]. Similarly, the spatial distortion in-
dex (DS) is measured in an indirect manner by taking the
difference between the two relations: (i) each channel of
an MS image and its corresponding low-pass-filtered and
downscaled PAN image; (ii) each channel of a PS output
image and a PAN image. These indirect measurement of
spectral and spatial distortions leads to discrepancy between
the QNR metric and human-perceived visual quality.

On the other hand, JQM [7] directly measures both the
spectral distortion between MS and downscaled PS images,
and the spatial distortion between PAN and fused PS im-
ages. These direct measurement of spectral and spatial
distortions leads to better agreement with perceived visual
quality than QNR. Throughout our intensive experiments,
we also have found that the JQM is better correlated with
perceived visual quality for PS output images from various

methods, as shown in Fig. 2 and Table. 1.

3. Ablation study
To show the effectiveness of the key points of our

SIPSA-Net, we provide a quantitative comparison among
different versions of proposed network with and without
feature alignment module (FAM) and SiS loss function. As
shown in Fig. 3 and Fig. 4, only the full version of SIPSA-
Net can effectively generate the pan-sharpened images of
high quality. The SIPSA-Net trained without the SiS loss
suffers from the misalignment between the MS and PAN
image pair, therefore ghosting artifact appear. The SIPSA-
Net trained without FAM and the version that was trained
with the pixel alignment module (PAM) as described in the
main paper could not be trained properly as can be seen
in both Fig. 3 and Fig. 4. The result of ablation study
shows the effectiveness of the proposed SiS loss and FAM
in SIPSA-Net.

4. Effectiveness of Feature Alignment Module
Our SIPSA-Net generates two kinds of output images:

an aligned MS image and a pan-sharpened image. As shown



in Fig. 5 and Fig. 6, the feature alignment module (FAM)
can effectively generate the aligned MS image from the mis-
aligned MS and PAN images. In Fig. 5 and Fig. 6, the
red lines indicate the starting point of the misaligned MS’s
shape, and the green lines indicate the starting point of the
aligned MS’s shape (aligned to PAN). The visualization re-
sults show that the MS image alignment by FAM works well
as we originally intended. Now the shapes in aligned MS
images are well aligned to the details of PAN images.
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