
Supplementary Material

A. Picasso Library
We summarize the major modules included in Picasso Library as Fig. A.1. All the novel operations introduced in this

paper are colorized, while the previous point cloud based operations [32, 33] are left as blank. We also compare performance
of the included convolutions for a very large input size, i.e. 65536 in Table A.1. For mesh-based convolutions, we use a batch
of 16 meshes as input, whose vertex size each is 65536. For point based convolutions, we use only vertices of those meshes
as input. Currently, 3D deep networks are widely taking data samples of <10000 points/vertices as input. For spatial graph
convolutions, the graph construction based on neighborhood search takes significant amount of time, especially when the
input size is large. For instance, see Table 10 of SPH3D-GCN [33]. We introduce mesh-based modules to take advantage of
its geodesic connections and save graph construction time. It is worth noting that we estimate the runtime under Tensorflow 2.

Figure A.1: Deep learning modules included in the Picasso Library.

Table A.1: Runtime comparison of different mesh-based convolutions and point-based convolutions. T represents the total
number of filters in the kernel. Cin denotes the number of input feature channels, and λ is the multiplier of separable con-
volutions. Regardless of graph construction, the speed of mesh-based convolutions are similar to point-based convolutions.
However, since point-based convolutions demand the graph to be pre-constructed before convolution, which takes significant
amount of time when input size is large. For time concern, mesh-based convolutions are preferred as the input size grows.

Convolution Type batch size input vetex/point size kernel configuration runtime (ms)
T Cin λ

facet2facet 16 65536 3 6 8 125
vertex2facet 16 65536 3 6 8 89
facet2vertex 16 65536

strided−−−→ 16384 12 48 2 195

hard SPH3D [33] 16 65536
strided−−−→ 16384 8× 2× 1 + 1 48 2 118 + graph construction

fuzzy SPH3D [32] 16 65536
strided−−−→ 16384 8× 2× 1 + 1 48 2 188 + graph construction

B. Quadric error computation
The plane function of an arbitrary facet can be denoted as nᵀx + d = 0, where x = [x, y, z]ᵀ is the point in 3D space,

n = [nx, ny, nz]ᵀ is the facet normal, and d is the intercept. The quadric Q of each facet is defined as Q = (A,b, c) =
(nnᵀ, dn, d2). It associates a value named quadric error to an arbitrary point x in space , which is computed as

Q(x) = xᵀAx + 2bᵀx + c. (B.1)



The quadric of each vertex v is an accumulation of the quadric of its adjacent facets N (v), represented as
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The quadric of each vertex cluster C to be contracted is an accumulation of the quadric of all the vertices in it, that is
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(∑
v∈C

Av,
∑
v∈C

bv,
∑
v∈C

cv

)
. (B.3)

The optimal vertex placement of each cluster after contraction is ideally computed as

v̄ = −A−1C bC , (B.4)

for which we determine if AC is a full-rank matrix by checking the reciprocal of its condition number. However, we still
observe numerical instability in the decimated mesh. We therefore replace the computation of v̄ to be

v̄ =
1

|C|
∑
v∈C

v. (B.5)

Open3D [71] computes v̄ in the same way. This improves the final results noticeably. See Table B.1 for the performance
comparison of PicassoNet (l = 2) on S3DIS Area 5 using Eq. (B.4) and Eq. (B.5).

Table B.1: Performance of PicassoNet (l = 2) on the fifth fold (Area 5) of S3DIS dataset under different computations of the
optimal vertex placement v̄.

Methods OA mAcc mIoU ceiling floor wall beam column window door table chair sofa bookcase board clutter
PicassoNet (l = 2, B.4) 88.2 69.4 62.5 93.2 98.4 81.1 0.0 32.1 45.9 75.6 78.5 85.9 51.5 69.0 45.2 55.3
PicassoNet (l = 2, B.5) 88.7 69.5 63.1 94.8 98.4 81.4 0.0 30.4 53.7 71.2 76.8 87.5 48.1 69.9 51.2 57.2

C. Backward propagations of different convolutions

In the main paper, we present forward computations of the vertex2facet and facet2vertex convolutions in Eqs. (1), (2), (3)
and Eqs. (4), (5), (6), respectively. In this section, we analyze their backward propagations in Eq. (C.1) and (C.2) correspond-
ingly. The computations of facet2facet convolution are similar to those of vertex2facet convolution. We hence omit them
here to avoid redundancy. We also provide the relate forward computations in Eq. (C.1) and C.2) as references. Please refer
to the main paper for the notations. Finally, as the GMM-based fuzzy coefficients {πit} are readily computed with built-in
Tensorflow functions, there is no need for us to analyze their backward propagations manually because Tensorflow is able to
achieve it automatically.
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facet2vertex kernel:
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D. 6-folds results on S3DIS
We report the 6 folds results of PicassoNet (l = 2) on S3DIS dataset in Table D.1. It can be noticed that the PicassoNet

using only l = 2 layers of mesh convolutions in each block are already competitive to KPConv [59] and DCM-Net [52].

Table D.1: Performance of PicassoNet (l = 2) on the entire 6 folds of S3DIS. PicassoNet using only l = 2 layers of mesh
convolutions in the convolution block are competitive to KPConv and DCM-Net.

Methods OA mAcc mIoU ceiling floor wall beam column window door table chair sofa bookcase board clutter

A
ll

6
Fo

ld
s

PointNet [43] 78.5 66.2 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 42.0 54.1 38.2 9.6 29.4 35.2
Engelmann et al. [1a] 81.1 66.4 49.7 90.3 92.1 67.9 44.7 24.2 52.3 51.2 47.4 58.1 39.0 6.9 30.0 41.9
SPG [30] 85.5 73.0 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9
PointCNN [35] 88.1 75.6 65.4 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6
SSP+SPG [29] 87.9 78.3 68.4 - - - - - - - - - - - - -
DeepGCN [2a] 85.9 - 60.0 93.1 95.3 78.2 33.9 37.4 56.1 68.2 64.9 61.0 34.6 51.5 51.1 54.4
KPConv [59] - 79.1 70.6 93.6 92.4 83.1 63.9 54.3 66.1 76.6 57.8 64.0 69.3 74.9 61.3 60.3
SPH3D-GCN [33] 88.6 77.9 68.9 93.3 96.2 81.9 58.6 55.9 55.9 71.7 72.1 82.4 48.5 64.5 54.8 60.4
SegGCN [32] 87.8 77.1 68.5 92.5 97.6 78.9 44.6 58.2 53.7 67.3 74.6 83.9 68.0 65.7 46.8 58.5
DCM-Net [52] - 80.7 69.7 93.7 96.6 81.2 44.6 44.9 73.0 73.8 71.4 74.3 63.3 63.9 63.0 61.9
PicassoNet (Prop. l = 2) 89.0 78.8 69.8 93.7 96.6 82.2 57.8 54.9 59.9 77.1 71.5 82.5 51.8 63.8 53.9 61.7

E. Results on ScanNet
Originally, we trained the PicassoNet using cropped meshes generated from the full-resolution meshes provided in Scan-

Net dataset [12], which produced mediocre results. We found that the reason of this phenomenon is caused by high-frequency
signals in noisy areas as well [52]. We hence voxelize the full-resolution meshes in ScanNet [12] using a grid size of 4cm,
and re-conducted the experiment. The performance of PicassoNet (l = 2) on the full and voxelized validation set is reported
in Table E.1. Similar results are expected on the test set of ScanNet.

Table E.1: 3D semantic segmentation performance of PicassoNet (l = 2) on the ScanNet validation set. ‘full’ refers to results
on the full-resolution meshes, while ‘4cm’ refers to the results on the voxelized meshes using a voxel size of 4cm. Similar
results are expected on the test set of ScanNet. For reference, we provide the results of DCM-Net and SPH3D-GCN on the
validation set, as well as the results of popular approaches on the test set.

Method mIoU floor wall chair sofa table door cab bed desk toil sink wind pic bkshf curt show cntr fridg bath other
DCM-Net (VC,rad/geo) 62.8 - - - - - - - - - - - - - - - - - - - -
SPH3D-GCN (full) 60.0 93.9 76.6 86.4 76.7 69.0 40.1 55.6 68.4 55.3 85.3 58.8 51.0 6.8 42.2 57.2 64.8 56.2 38.9 79.5 36.1
SPH3D-GCN (3cm) 61.2 95.5 78.3 86.9 78.9 71.4 41.6 57.1 70.6 57.4 87.0 58.9 49.2 7.7 42.2 57.8 63.8 58.7 42.2 82.1 37.2
PicassoNet (l = 2, full) 62.5 94.4 78.0 86.5 75.3 69.4 47.4 54.1 68.8 56.6 88.4 62.6 50.6 18.2 54.4 63.4 64.8 54.1 41.6 80.4 40.3
PicassoNet (l = 2, 4cm) 64.3 96.1 80.4 87.0 78.2 73.2 50.3 56.6 72.0 59.1 90.0 64.1 49.9 19.2 53.9 63.9 63.7 57.1 44.9 83.5 42.0
ScanNet [12] 30.6 78.6 43.7 52.4 34.8 30.0 18.9 31.1 36.6 34.2 46.0 31.8 18.2 10.2 50.1 0.2 15.2 21.1 24.5 20.3 14.5
PointNet++ [44] 33.9 67.7 52.3 36.0 34.6 23.2 26.1 25.6 47.8 27.8 54.8 36.4 25.2 11.7 45.8 24.7 14.5 25.0 21.2 58.4 18.3
SPLATNET3D [56] 39.3 92.7 69.9 65.6 51.0 38.3 19.7 31.1 51.1 32.8 59.3 27.1 26.7 0.0 60.6 40.5 24.9 24.5 0.1 47.2 22.7
Tangent-Conv [57] 43.8 91.8 63.3 64.5 56.2 42.7 27.9 36.9 64.6 28.2 61.9 48.7 35.2 14.7 47.4 25.8 29.4 35.3 28.3 43.7 29.8
PointCNN [35] 45.8 94.4 70.9 71.5 54.5 45.6 31.9 32.1 61.1 32.8 75.5 48.4 47.5 16.4 35.6 37.6 22.9 29.9 21.6 57.7 28.5
PointConv [65] 55.6 94.4 76.2 73.9 63.9 50.5 44.5 47.2 64.0 41.8 82.7 54.0 51.5 18.5 57.4 43.3 57.5 43.0 46.4 63.6 37.2
SPH3D-GCN [33] 61.0 93.5 77.3 79.2 70.5 54.9 50.7 53.2 77.2 57.0 85.9 60.2 53.4 4.6 48.9 64.3 70.2 40.4 51.0 85.8 41.4
KPConv [59] 68.4 93.5 81.9 81.4 78.5 61.4 59.4 64.7 75.8 60.5 88.2 69.0 63.2 18.1 78.4 77.2 80.5 47.3 58.7 84.7 45.0
SegGCN [32] 58.9 93.6 77.1 78.9 70.0 56.3 48.4 51.4 73.1 57.3 87.4 59.4 49.3 6.1 53.9 46.7 50.7 44.8 50.1 83.3 39.6
DCM-Net [52] 65.8 94.1 80.3 81.3 72.7 56.8 52.4 61.9 70.2 49.4 82.6 67.5 63.7 29.8 80.6 69.3 82.1 46.8 51.0 77.8 44.9

F. Mesh Simplification Efficiency
We summarize the statistics of vertex and facet sizes of the full-resolution meshes in ScanNet [12]. The minimum,

maximum, average of (vertex, facet) number are (9K, 16K), (553K, 1063K), and (150K, 286K). The standard deviations
are (81K, 155K). Similarly, we apply the proposed simplification algorithm to decimate all room samples in ScanNet into a
mesh of 65536 vertices. The runtime comparison of our algorithm and QEM are shown in the left plot of Fig. F.1. We also



test the runtime of our algorithm while decimating the room meshes into different resolutions, for which we use identical
configurations to those for S3DIS. The results are shown in the right plot of Fig. F.1. It can be noticed from the figure that
our conclusions based on S3DIS dataset consistently hold for ScanNet.

Figure F.1: The left figure compares the runtime of our mesh decimation method with QEM. The data is plotted by decimating
every sample in ScanNet to a mesh of 65536 vertices by both methods. The right figure shows the time taken by our
simplification algorithm to decimate all mesh samples in ScanNet to different vertex sizes, including 65536, 32768, 16384,
8192, 4096, 2048, 1024, 512, and 256.
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Table F.1: Input representations of different methods on the S3DIS dataset.

Methods Neural Element Input Features
Voxel Point Super-Point Geometric Texture

SPG [30] – – 3 [position, observation, geometrics]
[r, g, b]SSP+SPG [29] – – 3 [position, radiometry]

SEGCloud [58] 3 – – occupancy 1o

PointNet [43] – 3 – [x, y, z]

[r, g, b]

Tangent-Conv [57] – 3 – [distance to tangent plane, height, normal]
PointCNN [35] – 3 – [x, y, z, normal]
GACNet [62] – 3 – [height, eigenvalues]
SPH3D-GCN [33] – 3 – [x, y, z]
KPConv [59] – 3 – [1, x, y, z]
SegGCN [32] – 3 – [x, y, z]
DCM-Net [52] – 3 – [x, y, z, normal]
PicassoNet (Proposed) – 3 – [x, y, z] [r, g, b]


