Supplementary Material
A. Picasso Library

We summarize the major modules included in Picasso Library as Fig. A.l. All the novel operations introduced in this
paper are colorized, while the previous point cloud based operations [] are left as blank. We also compare performance
of the included convolutions for a very large input size, i.e. 65536 in Table A.1. For mesh-based convolutions, we use a batch
of 16 meshes as input, whose vertex size each is 65536. For point based convolutions, we use only vertices of those meshes
as input. Currently, 3D deep networks are widely taking data samples of <10000 points/vertices as input. For spatial graph
convolutions, the graph construction based on neighborhood search takes significant amount of time, especially when the
input size is large. For instance, see Table 10 of SPH3D-GCN [33]. We introduce mesh-based modules to take advantage of
its geodesic connections and save graph construction time. It is worth noting that we estimate the runtime under Tensorflow 2.

[Picasso Library]

[P

vertex2facet, Unpooling Pooling CUDA-based {,' Convolutior'l’ \i

facet2facet, [] Mesh i Pooling, !
facet2vertex, Simplification i Unpooling, :
vertex2vertex Sampling

Convolutions

Figure A.1: Deep learning modules included in the Picasso Library.

Table A.1: Runtime comparison of different mesh-based convolutions and point-based convolutions. 7' represents the total
number of filters in the kernel. C},, denotes the number of input feature channels, and A is the multiplier of separable con-
volutions. Regardless of graph construction, the speed of mesh-based convolutions are similar to point-based convolutions.
However, since point-based convolutions demand the graph to be pre-constructed before convolution, which takes significant
amount of time when input size is large. For time concern, mesh-based convolutions are preferred as the input size grows.

Convolution Type | batch size | input vetex/point size kerr;tl conﬁgurca’gon p\ runtime (ms)
facet2facet 16 65536 3 én 8 125
vertex2facet 16 65536 3 6 8 89
facet2vertex 16 65536 1%, 16384 12 48 | 2 195

hard SPH3D [33] 16 65536 "%, 16384 | 8 x2x 1+1 | 48 | 2 | 118 + graph construction
fuzzy SPH3D [32] 16 65536 2199, 16384 | 8 x2x 14+1 | 48 | 2 | 188 + graph construction

B. Quadric error computation

The plane function of an arbitrary facet can be denoted as nTx + d = 0, where x = [z, y, 2]T is the point in 3D space,
n = [ng,n,,n.|T is the facet normal, and d is the intercept. The quadric () of each facet is defined as Q = (A, b,¢) =
(nnT,dn, d?). It associates a value named quadric error to an arbitrary point X in space , which is computed as

QR(x) =xTAx+2bTx + c. (B.1)

The quadric of each vertex v is an accumulation of the quadric of its adjacent facets A/(v), represented as

Qv=(Aubyc)={ > Ay Y b, D . (B.2)

f,eN(v) f,eN(v) f,eN(v)
The quadric of each vertex cluster C to be contracted is an accumulation of the quadric of all the vertices in it, that is

Qc = (A¢,be, cc) = (ZAM > by, ch>. (B.3)

vel vel vel

The optimal vertex placement of each cluster after contraction is ideally computed as
v=-A;"be, (B.4)

for which we determine if A is a full-rank matrix by checking the reciprocal of its condition number. However, we still
observe numerical instability in the decimated mesh. We therefore replace the computation of v to be

1
v=ﬁzv. (B.5)

Open3D [71] computes v in the same way. This improves the final results noticeably. See Table B.1 for the performance
comparison of PicassoNet (! = 2) on S3DIS Area 5 using Eq. (B.4) and Eq. (B.5).

Table B.1: Performance of PicassoNet (I = 2) on the fifth fold (Area 5) of S3DIS dataset under different computations of the
optimal vertex placement v.

Methods OA mAcc mloU |ceiling floor wall beam column window door table chair sofa bookcase board clutter
PicassoNet (I =2,B.4)|88.2 694 625 | 932 984 81.1 0.0 321 459 756 785 859 515 69.0 452 553
PicassoNet (I = 2,B.5)|88.7 69.5 63.1 | 948 984 814 00 304 537 712 768 875 48.1 699 512 572

C. Backward propagations of different convolutions

In the main paper, we present forward computations of the vertex2facet and facet2vertex convolutions in Eqgs. (1), (2), (3)
and Eqgs. (4), (5), (6), respectively. In this section, we analyze their backward propagations in Eq. (C.1) and (C.2) correspond-
ingly. The computations of facet2facet convolution are similar to those of vertex2facet convolution. We hence omit them
here to avoid redundancy. We also provide the relate forward computations in Eq. (C.1) and C.2) as references. Please refer
to the main paper for the notations. Finally, as the GMM-based fuzzy coefficients {7;;} are readily computed with built-in
Tensorflow functions, there is no need for us to analyze their backward propagations manually because Tensorflow is able to
achieve it automatically.

vertex2facet kernel: gIJS _ %Zk(&swk)’s € {1,2,3}. (C.D

(2L = LS (&di), s € {1,2,3).

(T
I, = N%V) ZfiEN(V) <Zt:1 7riﬂUt) Ji.

facet2vertex kernel: 3_9: - Név) (Zf: . ﬁitwt) (C.2)
or, _ _1

\ dwy N(v) Zfi eN(v) (ﬂ-it Jl) :

D. 6-folds results on S3DIS

We report the 6 folds results of PicassoNet (I = 2) on S3DIS dataset in Table D.1. It can be noticed that the PicassoNet
using only [= 2 layers of mesh convolutions in each block are already competitive to KPConv [59] and DCM-Net [52].

Table D.1: Performance of PicassoNet (I = 2) on the entire 6 folds of S3DIS. PicassoNet using only | = 2 layers of mesh
convolutions in the convolution block are competitive to KPConv and DCM-Net.

Methods OA mAcc mloU |ceiling floor wall beam column window door table chair sofa bookcase board clutter
PointNet [43] 78.5 66.2 47.6 | 88.0 88.7 69.3 424 23.1 475 51.6 420 54.1 382 9.6 294 352
Engelmannetal. [1a] |81.1 66.4 49.7 | 90.3 92.1 67.9 447 242 523 512 474 58.1 39.0 69 30.0 41.9
SPG [30] 85.5 73.0 62.1 | 89.9 95.1 764 62.8 47.1 553 68.4 735 692 632 459 8.7 529
4| PointCNN [35] 88.1 75.6 654 | 948 973 75.8 63.3 51.7 584 572 716 69.1 39.1 612 522 58.6
©|SSP+SPG [29] 879 783 684 | - - - . . - - o . - .
©| DeepGCN [22] 859 - 60.0 | 93.1 953 782 339 374 56.1 68.2 649 61.0 346 515 51.1 544
< |KPConv [59] - 79.1 706 | 93.6 924 83.1 639 543 66.1 76.6 57.8 64.0 69.3 749 613 60.3
SPH3D-GCN [33] 88.6 779 689 | 933 96.2 819 58.6 559 559 717 72.1 82.4 485 0645 548 604
SegGCN [32] 87.8 77.1 68.5 | 925 97.6 789 446 582 537 673 746 839 68.0 657 468 58.5
DCM-Net [52] - 80.7 69.7| 937 96.6 81.2 446 449 73.0 73.8 714 743 633 639 630 619
PicassoNet (Prop. [=2)|89.0 78.8 69.8 | 93.7 96.6 822 57.8 549 59.9 77.1 71.5 825 51.8 638 539 61.7

E. Results on ScanNet

Originally, we trained the PicassoNet using cropped meshes generated from the full-resolution meshes provided in Scan-
Net dataset [12], which produced mediocre results. We found that the reason of this phenomenon is caused by high-frequency
signals in noisy areas as well [52]. We hence voxelize the full-resolution meshes in ScanNet [12] using a grid size of 4cm,
and re-conducted the experiment. The performance of PicassoNet (I = 2) on the fu/l and voxelized validation set is reported
in Table E.1. Similar results are expected on the test set of ScanNet.

Table E.1: 3D semantic segmentation performance of PicassoNet (I = 2) on the ScanNet validation set. ‘full’ refers to results
on the full-resolution meshes, while ‘4cm’ refers to the results on the voxelized meshes using a voxel size of 4cm. Similar
results are expected on the test set of ScanNet. For reference, we provide the results of DCM-Net and SPH3D-GCN on the
validation set, as well as the results of popular approaches on the test set.

Method mloU |floor wall chair sofa table door cab bed desk toil sink wind pic bkshf curt show cntr fridg bath other
DCM-Net (VC,rad/geo) | 62.8 | -

SPH3D-GCN (full) 60.0 193.9 76.6 86.4 76.7 69.0 40.1 55.6 68.4 553 85.3 58.8 51.0 6.8 422 57.2 64.8 56.2 38.9 79.5 36.1
SPH3D-GCN (3cm) 61.2 |95.5 78.3 86.9 789 71.4 41.6 57.1 70.6 57.4 87.0 58.9 49.2 7.7 422 57.8 63.8 58.7 422 82.1 37.2
PicassoNet (I = 2, full) | 62.5 |94.4 78.0 86.5 75.3 69.4 47.4 54.1 68.8 56.6 88.4 62.6 50.6 18.2 54.4 634 64.8 54.1 41.6 80.4 40.3
PicassoNet (I = 2, 4cm)| 64.3 |96.1 80.4 87.0 78.2 73.2 50.3 56.6 72.0 59.1 90.0 64.1 499 19.2 539 63.9 63.7 57.1 449 83.5 42.0
ScanNet [12] 30.6 |78.6 43.7 524 34.8 30.0 189 31.1 36.6 34.2 46.0 31.8 18.2 10.2 50.1 0.2 152 21.1 245 203 145
PointNet++ [44] 33.9 |167.7 52.3 36.0 34.6 23.2 26.1 25.6 47.8 27.8 54.8 36.4 252 11.7 45.8 24.7 145 25.0 21.2 584 183
SPLATNET;p, [56] 39.3 192.7 69.9 65.6 51.0 38.3 19.7 31.1 51.1 32.8 59.3 27.1 26.7 0.0 60.6 40.5 249 245 0.1 472 22.7
Tangent-Conv [57] 43.8 191.8 63.3 64.5 56.2 42.7 27.9 369 64.6 28.2 61.9 48.7 352 14.7 474 25.8 294 353 283 43.7 29.8
PointCNN [35] 45.8 1944 709 71.5 54.5 45.6 31.9 32.1 61.1 32.8 75.5 48.4 475 164 35.6 37.6 229 299 21.6 57.7 28.5
PointConv [65] 55.6 1944 76.2 73.9 63.9 50.5 44.5 47.2 64.0 41.8 82.7 54.0 51.5 18.5 574 43.3 57.5 43.0 464 63.6 37.2
SPH3D-GCN [33] 61.0 |93.5 77.3 79.2 70.5 54.9 50.7 53.2 77.2 57.0 859 60.2 534 4.6 489 643 70.2 404 51.0 85.8 414
KPConv [59] 68.4 193.5 81.9 81.4 785 61.4 59.4 64.7 75.8 60.5 88.2 69.0 63.2 18.1 784 77.2 80.5 47.3 58.7 84.7 45.0
SegGCN [32] 58.9 193.6 77.1 78.9 70.0 56.3 48.4 51.4 73.1 57.3 87.4 59.4 493 6.1 539 46.7 50.7 44.8 50.1 83.3 39.6
DCM-Net [52] 65.8 |194.1 80.3 81.3 72.7 56.8 52.4 61.9 70.2 49.4 82.6 67.5 63.7 29.8 80.6 69.3 82.1 46.8 51.0 77.8 44.9

F. Mesh Simplification Efficiency

We summarize the statistics of vertex and facet sizes of the full-resolution meshes in ScanNet [12]. The minimum,
maximum, average of (vertex, facet) number are (9K, 16K), (553K, 1063K), and (150K, 286 K). The standard deviations
are (81K, 155K). Similarly, we apply the proposed simplification algorithm to decimate all room samples in ScanNet into a
mesh of 65536 vertices. The runtime comparison of our algorithm and QEM are shown in the /eft plot of Fig. F.1. We also

test the runtime of our algorithm while decimating the room meshes into different resolutions, for which we use identical
configurations to those for S3DIS. The results are shown in the right plot of Fig. F.1. It can be noticed from the figure that
our conclusions based on S3DIS dataset consistently hold for ScanNet.

100

runtime (seconds)

+Ours
a4 QEM

" 65536 + 32768 + 16384 + 8192 + 4096 + 2048 1024 + 512 + 256

400

Lt e
% 300 v H R
s 2 at g
L e £ hid
a [
oot £
5200
100
s s e s . ,
2 3 4 5 5

input vertex size (x 100K)

input vertex size (x100K)

Figure F.1: The left figure compares the runtime of our mesh decimation method with QEM. The data is plotted by decimating
every sample in ScanNet to a mesh of 65536 vertices by both methods. The right figure shows the time taken by our
simplification algorithm to decimate all mesh samples in ScanNet to different vertex sizes, including 65536, 32768, 16384,
8192, 4096, 2048, 1024, 512, and 256.

References

[1a] Francis Engelmann, Theodora Kontogianni, Alexander Hermans, and Bastian Leibe. Exploring spatial context for 3D semantic seg-
mentation of point clouds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 716-724, 2017.

[2a] Guohao Li, Matthias Miiller, Ali Thabet, and Bernard Ghanem. DeepGCNs: Can GCNs go as deep as CNNs? In Proceedings of the
IEEE International Conference on Computer Vision, 2019.

Table F.1: Input representations of different methods on the S3DIS dataset.

Neural Element

Input Features

Methods Voxel | Point | Super-Point Geometric Texture
SPG [- - v [position, observation, geometrics]

SSP+SPG [— — v [position, radiometry] [r.9:0]
SEGCloud [v - - occupancy 1,

PointNet [- v - [x,y, 2]

Tangent-Conv [- v - [distance to tangent plane, height, normal]
PointCNN [- v - [x,y, z,normal]

GACNet [- v - [height, eigenvalues]

SPH3D-GCN [- v - [x,y, Z] [r, g,b]
KPConv [- v - [1,z,vy, 2]

SegGCN [- v - [x,y, 2]

DCM-Net [- v - [x,y, z,normal]

PicassoNet (Proposed) - v - [x,y, Z] [r, g,b]

