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1. Relation Confidence Estimation Module

As introduced in the main paper, the RCE module is an
important parts of our method. To demonstrate the effec-
tiveness of the RCE module, we further introduce the learn-
ing details of the RCE module and performance comparison
with the similar model proposed by previous works.

1.1. Learning

We use a supervised learning strategy to train the RCE
module of BGNN, in which the predicate class labels
(which predicate category and whether it is valid predicate
or background) are used for supervision. Different from the
cross-entropy loss Lp used for the final predicate predic-
tions, we develop a multi-task loss Lrce for the RCE mod-
ule. Specifically, we use two confidence predictions from
the RCE: multi-categories confidence score sm ∈ RCp and
binary confidence score sb. We define two focal losses,
Lm,Lb on the confidence predictions of M predicate pro-
posals {sm1 , ...smM}, {sb1, ...sbM}, respectively. Formally:

Lm = −α 1

M

M∑
k

|Cp|∑
i

yk,i(1− smk,i)
γ · log(smk,i) (1)

Lb = −α
1

M

M∑
k

y′k(1− sbk)γ · log(sbk) (2)

where yk is one-hot vector and y′k is binary label of pos-
itive predicate proposals. α, γ are the hyper-parameters.

1.2. Performance

To demonstrate the effectiveness of the RCE module on
removing negative predicate proposals, we use the AUC to
measure its performance, and compare it with two alterna-
tives: production of entities prediction score and relation
proposal network proposed by Graph-RCNN. The AUC of
those three methods are 0.839, 0.629, 0.671, respectively
on the validation set of VG, which indicates RCE module is
more effective than previous works.
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Figure 1: Qualitative comparisons between our method
and GPS-Net† in the SGGen setting. The predicates in
body and tail categories group are marked as red color. We
also show the reasonable relationships detected by models
which are not included in GT.

2. Model Comparison w/ Resampling

We note that we have reported the SOTA with recent RFS
resampling in Tab.1. To further demonstrate the effective-
ness of our BGNN, we add our BLS to other recent methods
(reimplemented GPS-Net and MSDN) and perform com-
parisons on the SGGen task as below:

Models SGGen

mR@100 R@100 Head Body Tail

GPS-Net w/ BLS 11.4 34.3 32.3 9.9 4.0
MSDN w/ BLS 11.8 34.4 32.4 10.5 5.1

BGNN w/ BLS 12.6 35.8 34.0 12.9 6.0

Table 1: The performance comparison between SOTA
with our BLS.

The results show that our BGNN still outperforms other
approaches under the same resampling strategy. In addi-
tion, we emphasize that the bi-level resampling is also our
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main contribution, and the above results demonstrate its ef-
fectiveness for improving all three methods.

3. Quantitative Studies
We extend the quantitative studies as a supplement to the

main paper. In this section, we show the detail of long-tail
parts partition, and performance comparison on each long-
tail part in Sec 3.1. For the fair comparison with the previ-
ous methods, we also show the per-class performance com-
parison on the PredCls subtask in Sec 3.2. In Sec 3.3, we
show the comparison of model prediction by visualizing the
scene graph generated by BGNN and previous SOTA GPS-
Net.

3.1. Long-tail Categories Groups Partition

Visual Genome First, we report the data distribution and
long-tail categories set partition detail of Visual Genome [3,
7] in figure 2. We divide the categories into three disjoint
groups according to the instance number in training split:
head(more than 10k), body(0.5k∼ 10k), tail(less than 0.5k)

We further present the performance comparison of the
baseline model(MSDN) between our upper bound assump-
tion referred to Sec. 1 of main paper. The result indi-
cates reducing noise in context modeling improve the base-
line model with a large margin especially on tail categories,
which only have several data points.

Open Images The long-tail categories group partition and
per-class performance comparison on Open Images dataset
are reported in Fig. 3. Similarly, we divide the categories of
Open Images V6 into three groups according to the instance
number in training split: head(more than 12k), body(0.2k
∼ 12k), tail(less than 0.2k). For performance comparison
with the SOTA method, our method achieves significant im-
provement on tail categories and achieves the comparable

overall performance with the GPS-Net [4] and Causal [5].

3.2. Per-class Performance Comparison with the
Other Models

Following the previous works setting [1, 6, 4, 5], we
show the comparison of Recall@100 on PredCls sub-task
of each categories with the two SOTA methods [4, 5], as
shown in fig 4.

Instead of only comparing the top-35 frequency cate-
gories, we present all 50 categories of Visual Genome.
Our model achieves a significant performance gain on low-
frequency categories, which demonstrates the effectiveness
of our BGNN.

3.3. Visualization of Model Prediction

To better understand the BGNN, we visualize scene
graph generation prediction from the Visual Genome
dataset. As shown in Fig. 1, our model has a significant
improvement for body and tail categories group compared
with GPS-Net. With a more effective confidence-aware
message propagation mechanism, our model has better con-
text modeling capability of visual representations for low-
frequency categories.
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Figure 3: The long-tail categories groups partition and per-class performance comparison of Open Images dataset. Part
(A) is the Open Images V4, part (A) is the Open Images V6 dataset. We compare with the two SOTA methods: Causal [5],
and GPS-Net [4].

Figure 4: The Recall@100 on Predicate Classification(PredCls) of all categories. We compare with the SOTA methods:
Causal [5], and GPS-Net [4]. ∗ denotes the re-sampling [2] is applied for this model.

necting language and vision using crowdsourced dense im-
age annotations. International journal of computer vision,
123(1):32–73, 2017. 2

[4] Xin Lin, Changxing Ding, Jinquan Zeng, and Dacheng Tao.
Gps-net: Graph property sensing network for scene graph
generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3746–3753,
2020. 2, 3

[5] Kaihua Tang, Yulei Niu, Jianqiang Huang, Jiaxin Shi, and
Hanwang Zhang. Unbiased scene graph generation from bi-
ased training. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3716–3725,
2020. 2, 3

[6] Kaihua Tang, Hanwang Zhang, Baoyuan Wu, Wenhan Luo,
and Wei Liu. Learning to compose dynamic tree structures
for visual contexts. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 6619–6628,
2019. 2

[7] Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei.
Scene graph generation by iterative message passing. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition(CVPR), pages 5410–5419, 2017. 2

3


