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1. Details for Top-k Sample Search

Different from normal NAS, we aim to search for most
suitable network architectures for ReID. Therefore, we di-
rectly search the network architectures on Market1501 [10].
In Market1501, the dataset is divided into a training set with
12936 images of 751 persons and a testing set of 750 per-
sons containing 3368 query images and 19732 gallery im-
ages. According to the proposed Top-k Sample Search, we
need to split the training set into a new training set and a
validation set. For each identity, we select 4 images to con-
struct the validation set. We utilize the triplet sampler as
in [5] on both training set and validation set to prepare the
batch data. Particularly, we choose the batch size as 64 and
the number of identities per batch is 16, namely each iden-
tity has 4 instances per batch. SGD optimizer with weight
decay 3e-4 and Adam optimizer with weight decay 0.001
are utilized for the network parameters and the architec-
ture parameters optimization respectively. The network pa-
rameters learning rate ηw starts from 0.025 and decays to
0.0001 via a cosine lr scheduler while architecture param-
eters learning rate ηα starts from 3e-4 and decayed by 0.1
at 80, 160 epochs. Totally, we train the search network for
240 epochs. During the training process, softmax loss and
triplet loss are jointly utilized for optimization and the mar-
gin of triplet loss is 0.3.

In Tab. 1, we show the inner structures of CNet and
CDNet via Top-k Sample Search, where k ∈ {1, 2, 3, 4}.
As analyzed in main manuscript (section 4.1), the archi-
tectures searched via top-2 sample search almost achieve
the best performance. As for CNet, the best architecture
(top-2 CNet) tends to select large kernel combination thus
makes up the defect of shallow depth. Note that the depth
of CDNet can vary from 6 to 12 and none of the searched
architectures choose the biggest depth. As we can see,
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the best architecture of CDNet(top-2 CDNet) just add one
more CBlock at each stage. Since top-2 CDNet has enough
depth, its kernels size tend to be smaller compared with top-
2 CNet. Therefore, it is inappropriate to randomly add the
depth of the network.

2. Visualization for the effect of BLNeck

Figure 1. We first select 8 identities and use t-sne method to project
their features into 2-dimension space. The feats tri constrained
by triplet loss are on the left side and the feats fc constrained by
softmax loss are on the right side.

Figure 2. The feats tri constrained by triplet loss are on the left
side and the feats fc constrained by softmax loss are on the right
side.

To further understand the influence of BLNeck, we vi-
sualize the distribution of the features which are processed
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Layer CNet(k1, k2) CDNet(k1, k2, r)
top-1 top-2 top-3 top-4 top-1 top-2 top-3 top-4

1 (3,5) (5,7) (5,7) (5,7) (3,7,2) (3,5,1) (5,7,2) (3,9,2)
2 (7,9) (7,9) (3,9) (3,5) (3,9,1) (3,7,2) (5,7,2) (5,9,1)
3 (3,7) (7,9) (3,5) (5,7) (5,9,2) (5,7,2) (3,5,2) (5,7,2)
4 (3,9) (7,9) (3,5) (3,7) (3,7,1) (5,9,1) (5,7,1) (3,7,1)
5 (5,9) (7,9) (3,5) (3,9) (3,9,2) (5,7,2) (7,9,2) (5,7,1)
6 (7,9) (3,5) (5,7) (3,7) (7,9,2) (5,7,1) (3,7,1) (5,7,1)

Depth 6 6 6 6 10 9 10 8

Table 1. The inner structures of all searched architectures. k1, k2 denote the kernel size of two branches in CBlock respectively. r denotes
the repeated times of CBlock for CDBlock

before and after by BLNeck. As shown in Fig. 1, BL-
Neck learns to map the feats tri to another embedding space
which is fitter to softmax loss. According to the distribu-
tion of feats fc, there are clear angle margins between each
identity. BNNeck proposed in [5] can easily balance the
constraint of triplet loss and triplet loss. In Fig. 2, we show
that BNNeck only makes a little adjustment of the features,
and they still affect greatly by each other, thus the train-
ing can not converge peacefully. Compared with BNNeck,
the proposed BLNeck has stronger ability to learn the map-
ping from embedding space constrained by triplet loss to
that constrained by softmax loss.

Architecture Param(M) rank-1 mAP
+Softmax 2.2 92.5 80.0
+Softmax Triplet 2.2 93.1 82.2
+FBLNeck 1.7 93.6 83.4

Table 2. Effect of FBLNeck. The backbone is the body of OS-
Net. +Softmax denotes OSNet is trained with only softmax loss.
+Softmax Triplet denotes that OSNet is trained with softmax and
triplet loss. +FBLNeck denotes that OSNet is trained with FBL-
Neck as its attached head. All experiments are conducted by us on
Market1501.

3. Scaling CDNet with width multiplier and
resolution multiplier

As shown in Tab. 3, we scale the CDNet for specific
devices with limited computational resources via adjusting
the width multiplier β and resolution multiplier γ. When
fixing the β and shrinking the γ from 1.0 to 0.5, the number
of FLOPs decreases significantly while the rank-1 just drops
smoothly. However, we find that both rank-1 and mAP drop
dramatically when β decreases to 0.25. This is because the
resolution of images are reduced to 4×2 at stage 3, which
is too small to learn effective information via convolution
at stage 3. It is worth noting that CDNet still can achieve
91.7%/79.7% at rank-1/mAP when both β and γ are set
to 0.25 and 1.0 respectively (with merely 0.1M parameters

and 77.9M FLOPs). This suggests that CDNet has great
potential for deployment in edge devices such as surveil-
lance cameras with limited computational resources. On the
right side, we also report the result of OSNet accordingly.
Apparently, CDNet outperforms OSNet at rank-1 and mAP
for most settings with lower parameters and FLOPs, which
demonstrates the robustness of combined pattern learning.

4. Implementation of FBLNeck in OSNet
As analyzed in main manuscript (section 4.5), FBLNeck

could take advantage of the combination of triplet loss and
softmax loss and utilize fine-grained information, which
leads to high performance. As a newly proposed neck, FBL-
Neck can be inserted to other models easily in addition to
CNet and CDNet. Here we investigate whether inserting
FBLNeck to OSNet could enhance the performance of OS-
Net [11]. As shown in Tab. 2, with FBLNeck implemented
with OSNet, both rank-1 accuracy and mAP increase, espe-
cially for mAP. It is fair to say that the proposed FBLNeck
could better balance the effect of triplet loss and softmax
loss to help models achieve higher performance. Note that
the number of parameters of OSNet+FBLNeck is reduced to
1.7M, since we remove the attached head of OSNet and our
FBLNeck is removable at inference time. Moreover, com-
paring OSNet + FBLNeck and CDNet, our searched CDNet
outperforms OSNet with less parameters, which means that
our proposed search algorithm can obtain models that are
computationally efficient and suitable for ReID.

5. Evaluation on ImageNet
In this section, we evaluate the transferability of pro-

posed CDNet on the ImageNet [6]. The size of image is
resized to 224 × 224. Random horizontal flip and random
crop are utilized for data augmentation. We adopt the train-
ing scheme as in [4]. CDNet is trained for 240 epochs with
weight decay 3e-5 and initial SGD learning rate 0.1(de-
cayed by a factor of 0.97 after each epoch). As shown in
Tab. 4, although our CDNet is originally designed for ReID,
it still achieves comparable performance among lightweight
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β γ
CDNet OSNet

Param(M) FLOPS(M) rank-1 mAP Param(M) FLOPs(M) rank-1 mAP
1.0 1.0 1.8 948.8 95.1 86.0 2.2 978.9 94.8 84.9
1.0 0.75 1.8 533.7 94.7 85.0 2.2 550.7 94.4 83.7
1.0 0.5 1.8 237.3 93.3 82.3 2.2 244.9 92.0 80.3
1.0 0.25 1.8 59.4 86.9 69.5 2.2 61.5 86.9 67.3
0.75 1.0 1.0 552.3 94.7 85.1 1.3 571.8 94.5 84.1
0.75 0.75 1.0 310.7 94.2 84.3 1.3 321.7 94.3 82.4
0.75 0.5 1.0 138.1 93.1 81.4 1.3 143.1 92.9 79.5
0.75 0.25 1.0 34.6 86.8 69.3 1.3 35.9 85.4 65.5
0.5 1.0 0.5 262.0 93.4 83.8 0.6 272.9 93.4 82.6
0.5 0.75 0.5 147.4 93.9 83.5 0.6 153.6 92.9 80.8
0.5 0.5 0.5 65.5 92.5 80.3 0.6 68.3 91.7 78.5
0.5 0.25 0.5 16.4 84.3 66.4 0.6 17.2 85.4 66.0
0.25 1.0 0.1 77.9 91.7 79.7 0.2 82.3 92.2 77.8
0.25 0.75 0.1 43.8 91.8 78.8 0.2 46.3 91.6 76.1
0.25 0.5 0.1 19.5 89.3 75.0 0.2 20.6 88.7 71.8
0.25 0.25 0.1 4.88 79.6 59.4 0.2 5.2 79.1 56.0

Table 3. Results(%) of varying width multiplier β and resolution multiplier γ for CDNet and OSNet. The resolution is 256 × 128, 192 ×
96, 128 × 64 and 64 × 32 for γ = 1.0, γ = 0.75, γ = 0.5 and γ = 0.25 respectively.

Model Param(M) FLOPs(M) Top-1
CARS[9] 5.1 519 75.2
FBNet[8] 5.5 375 74.9
GDAS[1] 5.3 581 74.0
DARTS[4] 4.7 574 73.3
OSNet[11] 2.7 1511 75.5
GhostNet[2] 5.2 141 73.9
MobileNetV2[7] 3.4 300 73.0
MobileNetV3[3] 5.4 219 75.2
CDNet(ours) 2.5 1571 75.1

Table 4. Top-1(%) accuracy on ImageNet-2012 validation set.

networks which are specially designed for classification. In
particular, CDNet outperforms MobileNetV2 by 2.1% with
fewer number of parameters. It is worth noting that CDNet
surpasses GDAS and DARTS by 1.1% and 1.8% respec-
tively, which indicates that the proposed CDS also has great
potential for classification tasks. Obviously, the superior
performance on classification tasks demonstrates the bene-
fit of learning combined pattern information.

6. Inference time on Market1501

As shown in Tab. 5, with about 3× fewer FLOPs and
13× fewer parameters, CDNet achieves competitive per-
formance with lower latency compared with BagofTrick,
which is representative of those models utilizing ResNet
as backbone. Besides, compared with the other two
lightweight models, CDNet achieves the best performance
with faster speed.

Model Param(M) Flops(M) Times(s) Rank-1 mAP
BagofTrick [5] 25.1 4053.3 248.3 94.5 85.9

OSNet[11] 2.2 979.0 156.0 94.8 84.9
GDAS[1] 4.0 1109.2 150.9 89.1 73.2

CDNet(ours) 1.8 955.1 142.4 95.1 86.0

Table 5. All experiments are conducted on Market1501 with single
RTX 2080 and the batch size is 128. The time is the average of 5
times inference time on test set with 19281 images.
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