
Continuous Face Aging via Self-estimated Residual Age Embedding

Zeqi Li*

ModiFace
lizeqi@cs.toronto.edu

Ruowei Jiang
ModiFace

irene@modiface.com

Parham Aarabi
ModiFace

parham@modiface.com

1. Supplementary
1.1. Network Architecture and Optimization Set-

tings

During training, we use Adam optimizer with the learn-
ing rate of 0.0002 and batch size of 20 and 5 for 256 and 512
model respectively. The model is trained for 200 epochs and
learning rate is linearly decayed over last 100 epochs.

Layer Stride Act. Norm Output Shape

Input - - - 256x256x3

Conv. 7 x 7 1 ReLU Spectral 256x256x64
Conv. 3 x 3 2 ReLU Spectral 128x128x128
Conv. 3 x 3 2 ReLU Spectral 64x64x256

Res. Block 1 ReLU Spectral 64x64x256
Res. Block 1 ReLU Spectral 64x64x256
Res. Block 1 ReLU Spectral 64x64x256
Res. Block 1 ReLU Spectral 64x64x256
Res. Block 1 ReLU Spectral 64x64x256
Res. Block 1 ReLU Spectral 64x64x256

Table 1. Identity Encoder E specification. Spectral means spectral
normalization [4] is applied after each convolutional layer.

Layer Stride Act. Norm Output Shape

Encoding - - - 64x64x256

Res. Block 1 ReLU Instance 64x64x256
Res. Block 1 ReLU Instance 64x64x256
Res. Block 1 ReLU Instance 64x64x256

Deconv. 3 x 3 2 ReLU Instance 128x128x128
Deconv. 3 x 3 2 ReLU Instance 256x256x64

Conv. 7 x 7 1 Tanh - 256x256x3
Table 2. Generator G specification. Instance means instance nor-
malization [7] is applied after each convolutional layer.

Detailed network architectures for E, G and C are pre-
sented in Table 1, 2 and 3 respectively.

*This work is done during Zeqi Li’s full-time employment at ModiFace.

Layer Norm Output Shape

Encoding - 64x64x256

GAP - 1x1x256
Flatten - 256
Linear Weight 100

Table 3. Age estimator C specification. GAP means global aver-
age pooling. Weight means weight normalization [6] is applied to
linear layer (bias term are set to zero).

1.2. Pair-wise Identity Preservation Results

Here, we provide the complete pair-wise identity preser-
vation comparison using Face++ in Table 4 and 5 for
CACD2000 [1] and FFHQ [3], respectively. As can be seen,
our model achieves the highest verification rate in every as-
pects compared to prior works.

1.3. More Aging Results

Continuous Aging. We generate the complete continu-
ous aging results of a person from age 20 to age 69 and the
results are displayed in Fig. 3. As shown, aging proceeds
in a natural and gradual manner.

Enlarged Comparison of group 50+ In Fig. 1, we show
the enlarged generated images of age group 50+. Our model
is able to generate fine aging details aligned with the target
age group.

1.4. Limitations

While our work can generate natural face aging, we also
observe some failure cases when generating outputs for in-
put image with hats and glasses or faces with heavy make-
ups (in Fig. 2). The model also does not work well for
extreme target age like 95-year-old, where the correspond-
ing exemplar-face aging basis is hardly trained due to lack
of data for those minority classes.
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Figure 1. Enlarged examples of generated age 50+. Our model demonstrate better details in aging effects such as wrinkles and beard
change.

Figure 2. Failure cases: heavy makeup with hat, glasses with bad lighting. Our model could not best capture the personalized information
such as skin texture in these cases.
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Figure 3. Complete continuous aging results from age 20 to 69. Input is at the top left corner of each image grid. Generated image of real
age is in the red box.
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Average of All Pairs Hardest Pair Easiest Pair

CAAE [9] 60.88% (test, 50+): 2.0% (40-49, 50+): 99.97%
IPCGAN [8] 91.40% (10-29, 50+): 62.98% (40-49, 50+): 99.98%
S2GAN [2] 98.91% (10-29, 40-49): 94.08% (40-49, 50+): 99.96%
Lifespan [5] 93.25% (test, 50-69): 80.94% (30-39, 50-69): 99.75%

Ours 99.97% (test, 40-49): 99.96% (test, 30-39): 100.00%
Table 4. Complete evaluation of identity preservation in terms of face verification rates on CACD2000 [1].

Average of All Pairs Hardest Pair Easiest Pair

Lifespan [5] 87.11% (test, 50-69): 72.32% (30-39, 50-69): 98.85%
Ours 99.98% (test, 60+): 99.96% (test, 30-39): 100.00%

Table 5. Complete evaluation of identity preservation in terms of face verification rates on FFHQ [3].
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