
Supplementary Materials
DeepI2P: Image-to-Point Cloud Registration via Deep Classification

Jiaxin Li
Bytedance

Gim Hee Lee
National University of Singapore

A. “Grid Classification + PnP” Method
A.1. Grid Classification

We divide the H×W image into a tessellation of 32×32
regions and then assign a label to each region. For exam-
ple, an 128 × 512 image effectively becomes 4 × 16 = 64
patches, and the respective regions are assigned to take
a label lf ∈ {0, 1, · · · , 63}. In the per-point classifica-
tion, a point taking a label lf projects to the image re-
gion with the same label. Consequently, the grid classi-
fication is actually downsampling the image by a factor
of 32, and reveals the pixel of the downsampled image to
point correspondence. Formally, the grid classification as-
signs a label to each point, Lf = {lf1 , l

f
2 , · · · , l

f
N}, where

lfn ∈ {0, 1, · · · , H×W
32×32 − 1}.

Label Generation. Grid classification is performed only
on points that are predicted as inside camera frustum, i.e.
l̂i = 1. The goal of grid classification is to get the assign-
ment of the point to one of the 32 × 32 patches. We define
the labels from the grid classification as:

lfi =

⌊
p′xi

32

⌋
+

⌊
p′yi

32

⌋
· W
32

, (1)

where b.c is the floor operator. Note that the image width
and height (W,H) are required to be a multiple of 32.

Training the Grid Classifier. As mentioned in Sec-
tion 4.2, the training of the grid classifier is very similar
to the frustum classifier with the exception that the labels
are different. Nonetheless, the frustum and grid classifier
can be trained together as shown in Fig. 1.

A.2. PnP

Given the grid classifier results, the pose estimation
problem can be formulated as a Perspective-n-Point (PnP)
problem. The grid classification effectively builds corre-
spondences between each point to the subsampled image,
e.g. subsampled by 32. The PnP problem is to solve the

rotation R and translation t of the camera from a given
set of 3D points {P1, · · · ,PM | Pm ∈ R3}, the corre-
sponding image pixels {p1, · · · ,pM | pm ∈ R2}, and
the camera intrinsic matrix K ∈ R3×3. The 3D points are
those classified as within the image by the frustum classi-
fication, i.e. P = {P1, · · · ,PM}, where Pm is the point
Pn ∈ P : l̂cn = 1. The corresponding pixels are acquired
given by:

pyi
=

⌊
lfi
W ′

⌋
, pxi

= lfi −W ′pyi
, where W ′ =

W

32
, (2)

and Lf = {lf1 , · · · , l
f
M}, lfi ∈ [0, (HW/(32 × 32)) − 1]

is the prediction from the grid classification. We can effec-
tively solve for the unknown pose Ĝ ∈ SE(3) in the PnP
problem after resizing the image into 1/32 of the original
size. Accordingly, the camera intrinsics K ′ after the resize
is obtained by dividing fx, fy , cx, cy with 32. There are
many off-the-shelf PnP solver like EPnP [3], UPnP [2], etc.
We apply RANSAC on EPnP provided by OpenCV to ro-
bustly solve for Ĝ.

Implementation details. The RANSAC PnP [1] from
OpenCV does not require initialization. We set the thresh-
old for inlier reprojection error to 0.6 and maximum itera-
tion number to 500 in RANSAC. Note that we can option-
ally use the results from RANSAC PnP to initialize the in-
verse camera projection optimization.

A.3. Experiments

Inverse Camera Projection vs RANSAC PnP [1]. As
shown in Table 1, the inverse camera projection solver with
3-DoF performs the best. This verifies the effectiveness of
our solver design in Section 5. Nonetheless, the advantage
of RANSAC PnP over the inverse camera projection solver
is that it does not require initialization, and its performance
with 6-DoF is also sufficiently good.

B. Classification Network Details
B.1. Point Cloud Encoder

The input point cloud is randomly downsampled to a size
of 20,480. The Lidar intensity values are appended to the
x-y-z coordinates for each point. Consequently, the size of
the input data is 4 × 20, 480. During the first sampling-
grouping-PointNet operation, the FPS operation extracts
M1 = 128 nodes denoted as P(1). The grouping procedure
is exactly the same as the point-to-node method described
in SO-Net [4]. As shown in Fig. 1(a), our PointNet-like
module, which produces the feature P (1), is a slight modifi-
cation of the original PointNet [5]. At the second sampling-
grouping-PointNet operation, the FPS extracts M2 = 64
nodes denoted as P(2). The grouping step is a kNN-based
operation as described in PointNet++ [6]. Each node in
P(2) are connected to its 16 nearest neighbors in P(1).
The feature P (2) for each node in P(2) is obtained by the
PointNet-like module shown in Fig. 1(b). Finally, a global
point cloud feature vector is obtained by feeding P(2) and
P (2) into a PointNet module shown in Fig. 1(c)

Sh
ar

ed
 F

C
 3

2
Sh

ar
ed

 F
C

 3
2

Sh
ar

ed
 F

C
 3

2

m
ax
po
ol

Sh
ar

ed
 F

C
 6

4
Sh

ar
ed

 F
C

 6
4

(a)

Sh
ar

ed
 F

C
 2

56
Sh

ar
ed

 F
C

 2
56

m
ax
po
ol

Sh
ar

ed
 F

C
 5

12
Sh

ar
ed

 F
C

 2
56

(b)

Sh
ar

ed
 F

C
 2

56
Sh

ar
ed

 F
C

 5
12

m
ax
po
ol

(c)

Figure 1. Network details in Point Cloud Encoder. (a) (b) (c) are
the PointNet-like network structures used in the encoder.

B.2. Image-Point Cloud Attention Fusion

The first attention fusion module takes the image fea-
tures I(1) ∈ R256×H1×W1 , H1 = H/16,W1 = W/16,
global image feature I(3) ∈ R512, and point cloud feature
P (1) ∈ RC1×M1 as input. A shared MLP takes I(3), P (1)

as input and produces the weighting S
(1)
att ∈ R(H1·W1)×M1 .

The shared MLP consists of two fully connected layers.
The weighted image feature Ĩ(1) ∈ R256×M1 is from the
multiplication of I(1) with S

(1)
att . Ĩ(1) is then used in the

Point Cloud Decoder. Similarly, Ĩ(2) ∈ R512×M1 is ac-
quired using shared MLP of the same structure, which

takes I(3), P (2) as input; and outputs the weighting S
(2)
att ∈

R(H2·W2)×M2 .

B.3. Point Cloud Decoder

There are two concatenate-sharedMLP-interpolation
processes in the decoder to get P̃

(2)
(itp) ∈ RC2×M1 and

P̃
(1)
(itp) ∈ RC1×N . In both interpolation operations, the k

nearest neighbor search is configured as k = 16. The
shared MLP that takes [I(3), Ĩ(2), P (3), P (2)] to produce
P̃ (2) ∈ RC2×M2 is shown in Fig. 2(a). Similarly, the shared
MLP that takes [P̃

(2)
(itp), Ĩ

(1)] to produce P̃ (1) ∈ RC1×M1

is shown in Fig. 2(b). Finally, the shared MLP shown in
Fig. 2(c) takes [P (1), P̃

(1)
(itp) ∈ RC1×N] to produce the frus-

tum and grid predictions scores.

Sh
ar

ed
 F

C
 1

02
4

Sh
ar

ed
 F

C
 5

12
Sh

ar
ed

 F
C

 5
12

(a)

Sh
ar

ed
 F

C
 5

12
Sh

ar
ed

 F
C

 1
28

Sh
ar

ed
 F

C
 1

28

(b)

Sh
ar

ed
 F

C
 2

56
Sh

ar
ed

 F
C

 2
56

Sh
ar

ed
 F

C

2+
(H

W
/3

2/
32

)

(c)

Figure 2. Network details in Point Cloud Decoder. (a) (b) (c) are
the shared MLPs used in the encoder.

C. Experiment Details
C.1. Dataset Configurations

In the Oxford dataset, the point clouds are built from the
accumulation of the 2D scans from a 2D Lidar. Each point
cloud is set at the size of radius 50m, i.e. diameter 100m.
Point clouds are built every 2m to get 130,078 point clouds
for training and 19,156 for testing. There are a lot more
training/testing images because they are randomly sampled
within ±10m. Note that we do not use night driving traver-
sals for training and testing because the image quality at
night is too low for cross-modality registration. The im-
ages are captured by the center camera of a Bumblebee tri-
camera rig. The bottom 160 rows of the image is cropped
out because those rows are occupied by the egocar. The
800 × 1280 image is resized to 400 × 640 and then ran-
dom/center cropped into 384× 640 during training/testing.

In KITTI Odometry dataset, point clouds are directly ac-
quired from a 3D Lidar. Every point cloud in the dataset is
used for either training or testing. We follow the common
practice of utilizing the 0-8 sequences for training, and 9-10
for testing. In total there are 20,409 point clouds for train-
ing, and 2,792 for testing. The top 100 rows of the images
are cropped out because they are mostly seeing the sky. The
original 320× 1224 images are resized into 160× 612, and

� ∈ ℝ
3×�

∈�
(1)

ℝ
×�1 �1

∈�
(2)

ℝ
×�2 �2

∈�
(3)

ℝ
×1�3

Po
in

tN
et

Po
in

tN
et

Sh
ar

ed
 M

LP

� × � �
(1) �

(2)
∈�

(3)
ℝ

×1�3

Gloabl Img
Feature

3 × � × � × ×�1

�

16

�

16
× ×�2

�

32

�

32

R
es

N
et

R
es

N
et

Av
gP

oo
l

Gloabl PC
Feature

FP
S&

G
ro

up

FP
S&

G
ro

up
Po

in
tN

et
[,] ∈�̂ � ̂ ℝ

6

PC Encoder

Legend

Img Encoder

Figure 3. Our network architecture for the baseline method.

then random/center cropped into 160 × 512 during train-
ing/testing.

C.2. “Direct Regression" Method

The direct regression method is a deep network-based
approach that directly regresses the pose between a pair of
image and point cloud. The network architecture is shown
in Fig. 3. The Point Cloud Encoder and Image Encoder
are exactly the same as the classification network in our
DeepI2P. The global point cloud feature P (3) ∈ R512 and
global image feature I(3) ∈ R512 are fed into a MLP to
produce the relative pose. The relative translation is rep-
resented by a vector v̂ ∈ R3, while the relative rotation is
represented by angle-axis ê ∈ R3. Given the ground truth
v ∈ R3 and rotation R ∈ R3×3, the loss function is given
by:

L = Ltran + Lrot = ‖v − v̂‖2 + ‖f(ê)−R‖F , (3)

where f(·) is the funtion that converts the angle-axis rep-
resentation ê ∈ R3 to a rotation matrix R̂ ∈ R3×3, and
‖ ·‖F is the matrix Frobenius norm. The training configura-
tions are the same as our DeepI2P, i.e. the image and point
cloud are within 10m and additional random 2D rotation is
applied to the point cloud.

References
[1] Martin A Fischler and Robert C Bolles. Random sam-

ple consensus: a paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

[2] Laurent Kneip, Hongdong Li, and Yongduek Seo.
Upnp: An optimal o (n) solution to the absolute pose
problem with universal applicability. In European Con-
ference on Computer Vision, pages 127–142. Springer,
2014.

[3] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal
Fua. Epnp: An accurate o (n) solution to the pnp
problem. International journal of computer vision,
81(2):155, 2009.

[4] Jiaxin Li, Ben M Chen, and Gim Hee Lee. So-net:
Self-organizing network for point cloud analysis. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 9397–9406, 2018.

[5] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J
Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, pages 652–660, 2017.

[6] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning

on point sets in a metric space. In Advances in neu-
ral information processing systems, pages 5099–5108,
2017.

