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In appendix A, we introduce the formulation of contrastive domain discrepancy. Then, we complement more ablation
analysis and results in appendix B and appendix C, respectively. In appendix D, we elaborate the implementation details.
Finally, in appendix E, we show the feature visualization with t-SNE [12].

A. Contrastive Domain Discrepancy
In this section, we detail the formulation of Contrastive Domain Discrepancy (CDD) [7]. Here, given input xi, we define

the output of l th layer as φl(xi), where the model is parameterized by φ.
Formally, Maximum Mean Discrepancy(MMD) [5] defines the difference between two distributions with their mean

embeddings in the reproducing kernel Hilbert space (RKHS), i.e., DH(P,Q) , supf∼H (EXs [f(Xs)]− EXt [f(Xt)])H ,
where H is class of functions. Then, for a layer l, the squared value of MMD is estimated with the empirical kernel mean
embeddings:
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where xs ∈ S ′ ⊂ S, xt ∈ T ′ ⊂ T , ns = |S ′|, nt = |T ′|. The S ′ and T ′ represent the mini-batch source and target data
sampled from S (i.e., set of source data) and T (i.e., set of target data) respectively. And kl denotes the kernel selected for
the l-th layer of deep neural network.

Built upon Maximum Mean Discrepancy, Contrastive Domain Discrepancy(CDD) takes the intra- and inter- class discrep-
ancy into the consideration simultaneously.

Concretely, supposing ρcc′(y, y′) =

{
1 if y = c, y′ = c′;
0 otherwise. , for two classes c1, c2 (which can be same or different), the

kernel mean embedding estimation for squared DH(P,Q) is
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Notably, Eq. 2 delivers two kinds of class-aware domain discrepancy, 1) when c1 = c2, it measures intra-class domain
discrepancy; 2) when c1 6= c2, it becomes the inter-class domain discrepancy.
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Based on the above definitions, the CDD is calculated as (The ŷt1, ŷ
t
2, · · · , ŷtnt

is abbreviated as ŷt1:nt
)
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D̂cc(ŷt1:nt
, φ)︸ ︷︷ ︸

intra

− 1

|Cs|(|Cs| − 1)

|Cs|∑
c=1

|Cs|∑
c′=1
c′ 6=c

D̂cc
′
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where the intra- and inter-class domain discrepancies will be optimized in the opposite direction.

B. More Ablation Analysis
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Figure A. (a) Sensitivity analysis to λ on OfficeHome. (b) Sensitivity analysis to ω (Office-31). (c) Comparison between constant weight
and incremental weight of γ (Office-31). (d) Sensitivity analysis to τ (Office-31). All experiments are conducted under the UniDA setting.

Sensitivity to hyper-parameters. In the main paper, we have discussed the sensitivity to λ and γ in Sec. 5.3. Here, we
complement more experimental results and further analysis. All these experiments are conduct under the UniDA setting.

In Fig A (a), we present the sensitivity analysis to λ on OfficeHome, which further justifies the robustness of the proposed
approach. Then in Fig A (b), we conducts experiments on Office-31 to testify the robustness to ω, which controls the increase
rate of the weight. We could observe that the performance only fluctuates in a narrow range under the change of ω, which
proves the the insensitivity to ω. Finally, we present the comparison between constant weight and incremental weight of
γ on Office-31 in Fig. A (c). Obviously, incremental weight of γ does not shows apparent improvement than the constant
ones, which is inconsistent with the phenomenon on OfficeHome (Sec. 5.3). This is because the samples of Office-31
converge to the optimal clustering more quickly so that the boundary between clusters are distinct enough, which results in
the insensitivity to the setting of γ. Moreover, we also testify the robustness to τ (temperature on the regularizer) with a wide
range, and present the comparisons on Fig. A (d). As shown in the figure, the regularizer is insensitive to τ as the design of
incremental weight allows the regularizer to work in a progressive way.

Time Complexity of Clustering. The K-means implementation we adopt is based on scikit-learn, which employs Elkan
algorithm. For n samples, k clusters, and e iterations, the time complexity is roughly O(nke). For one round of clusterings,
we only need a very few times of searches, e.g., 3 for Office31 and OfficeHome. Moreover, after a few rounds of training,
we empirically observe the optimal K will converge to a certain value. And we will stop searching for K in the subsequent
training to improve the efficiency, as explained in Sec. 4.3.

C. Supplemental Results

Table A. Results (%) on Office-31 under Closed Set Scenario. All results except ours are cited from [14].
A→W A→D D→W W→D D→A W→A Avg

DANN [4] 86.7 97.2 99.8 86.1 72.5 72.8 85.9
ETN [2] 87.9 99.2 100 88.4 68.7 66.8 85.2
STA [10] 77.1 90.7 98.1 75.5 51.4 48.9 73.6
UAN [16] 86.5 97.0 100 84.5 69.6 68.7 84.4
DANCE [14] 88.6 89.4 97.5 100 69.5 68.2 85.5
Ours 89.09 87.24 96.81 100 74.39 76.77 87.38



Table B. Results (%) on Office-31 for OSDA (ResNet-50).

OSDA A→W A→D D→W W→D D→A W→A Avg

OS OS* OS OS* OS OS* OS OS* OS OS* OS OS* OS OS*

RTN [11] 85.6±1.2 88.1±1.0 89.5±1.4 90.1±1.6 94.8±0.3 96.2±0.7 97.1±0.2 98.7±0.9 72.3±0.9 72.8±1.5 73.5±0.6 73.9±1.4 85.4 86.8
DANN [4] 85.3±0.7 87.7±1.1 86.5±0.6 87.7±0.6 97.5±0.2 98.3±0.5 99.5±0.1 100.0±.0 75.7±1.6 76.2±0.9 74.9±1.2 75.6±0.8 86.6 87.6
ATI-λ [13] 87.4±1.5 88.9±1.4 84.3±1.2 86.6±1.1 93.6±1.0 95.3±1.0 96.5±0.9 98.7±0.8 78.0±1.8 79.6±1.5 80.4±1.4 81.4±1.2 86.7 88.4
OSBP [15] 86.5±2.0 87.6±2.1 88.6±1.4 89.2±1.3 97.0±1.0 96.5±0.4 97.9±0.9 98.7±0.6 88.9±2.5 90.6±2.3 85.8±2.5 84.9±1.3 90.8 91.3
STA [10] 89.5±0.6 92.1±0.5 93.7±1.5 96.1± 0.4 97.5±0.2 96.5±0.5 99.5±0.2 99.6±0.1 89.1±0.5 93.5±0.8 87.9±0.9 87.4±0.6 92.9 94.1
Inheritune [8] 91.3±0.7 93.2±1.2 94.2±1.1 97.1±0.8 96.5±0.5 97.4±0.7 99.5±0.2 99.4±0.3 90.1±0.2 91.5± 0.2 88.7±1.3 88.1±0.9 93.4 94.5

Ours 93.8±1.0 99.4±1.1 90.72±1.1 95.6±0.9 96.9±0.5 98.4±0.7 95.7±0.2 98.4±0.1 92.5±0.5 96.6± 0.4 94.5±2.1 96.3±1.8 94.0 97.5

Table C. Results (%) on Office-Home for OSDA (ResNet-50).
OSDA Ar→Cl Pr→Cl Rw→Cl Ar→Pr Cl→Pr Rw→Pr Cl→Ar Pr→Ar Rw→Ar Ar→Rw Cl→Rw Pr→Rw Avg

ATI-λ [13] 55.2 52.6 53.5 69.1 63.5 74.1 61.7 64.5 70.7 79.2 72.9 75.8 66.1
DANN [4] 54.6 49.7 51.9 69.5 63.5 72.9 61.9 63.3 71.3 80.2 71.7 74.2 65.4
OSBP [15] 56.7 51.5 49.2 67.5 65.5 74.0 62.5 64.8 69.3 80.6 74.7 71.5 65.7
STA [10] 58.1 53.1 54.4 71.6 69.3 81.9 63.4 65.2 74.9 85.0 75.8 80.8 69.5
Inheritune [8] 60.1 54.2 56.2 70.9 70.0 78.6 64.0 66.1 74.9 83.2 75.7 81.3 69.6

Ours 60.89 52.68 60.25 82.94 70.20 83.28 64.54 65.74 73.26 86.11 77.99 83.53 71.78

Results under Open Set Setting. In Table B and Table C, we provide more results Office-31 and OfficeHome under
OSDA setting. We presents the OS and OS* results in Office-31 and OS for OfficeHome, where OS is the class-wise mean
accuracy on common classes and the unknown class and OS* is the average over common classes. Notably, these results
follow the universal principle, i.e., both domains may hold private classes.

Results under Closed Set Setting. In Table C, we present the classification results under the closed set domain adaptation
setting (CSDA). Notably, all above results, except ours, are drawn from DANCE [14]. Inferred from this table, we could
observe that our method maintains its superiority against other approaches, and achieves better results on Office, which again
verify the stronger generalizability of the proposed method.

Table D. Average Accuracy (%) on Office-Home (ResNet-50)
Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg
ResNet [6] 59.37 76.58 87.48 68.86 71.11 81.66 73.72 56.30 86.07 78.68 59.22 78.59 73.22
DANN [4] 56.17 81.72 85.87 68.67 73.38 83.76 69.92 56.84 85.80 79.41 57.26 78.26 73.17
RTN [11] 50.46 77.80 86.90 65.12 73.40 85.07 67.86 45.23 85.50 79.20 55.55 78.79 70.91
IWAN [17] 52.55 81.40 86.51 70.58 70.99 85.29 74.88 57.33 85.07 77.48 59.65 79.91 73.39
PADA [1] 39.59 69.37 76.26 62.57 67.39 77.47 48.39 35.79 79.60 75.94 44.50 78.10 62.91
ATI [13] 52.90 80.37 85.91 71.08 72.41 84.39 74.28 57.84 85.61 76.06 60.17 78.42 73.29
OSBP [15] 47.75 60.90 76.78 59.23 61.58 74.33 61.67 44.50 79.31 70.59 54.95 75.18 63.90
UAN [16] 63.00 82.83 87.85 76.88 78.70 85.36 78.22 58.59 86.80 83.37 63.17 79.43 77.02
USFDA [9] 63.35 83.30 89.35 70.96 72.34 86.09 78.53 60.15 87.35 81.56 63.17 88.23 77.03
CMU [3] 63.52 83.81 88.94 77.72 79.37 86.85 78.61 59.27 88.25 84.06 64.57 81.36 78.03
Ours 63.10 80.95 92.12 69.27 75.82 87.11 81.46 55.78 92.10 82.42 62.05 87.29 77.46

Results under Universal Setting. In Table D, we show the averaged accuracy on OfficeHome. Our proposed DCC
achieves competitive results compared to previous literature. Note that CMU [3] reports higher average accuracy, but it
employs classifier ensemble. Despite of this, our method still attains better results in terms of multiple sub-tasks.

D. Implementation Details
Update strategy of the prototype bank. Through K-means clustering, we could obtain the initial prototypes of target

samples, {µt1(0), ..., µ
t
K(0)}. Here, we detail the update of prototypes during training.

In each iteration, we calculate the local prototypes in a batch as:
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where I denotes the current iteration and D̄tk(I) represents target samples with cluster label k in iteration I .
The global prototype is updated as :

µtk(I) = σIµ
t
k(I−1) + (1− σI)µ̄tk(I), (6)



where σ is the similarity between local prototypes and global prototypes, it is calculated as:

σI = Sim(µtk(I−1), µ̄
t
k(I)) (7)

where Sim(·) denotes the cosine similarity, i.e., Sim(a, b) = 〈a,b〉
‖a‖‖b‖ .

In this way, the prototype bank updates adaptively according to the similarity between global prototypes and local proto-
types, which enables the prototype bank update more efficiently.

Training strategy. For Office-31 and OfficeHome, the model is trained for 5K steps and the clustering is performed every
200 steps. Considering the larger scale of VisDA and DomainNet, the total step is set to 10K, and the cluster interval is set to
500 and 1K, respectively. Besides, to handle the larger distribution shift in VisDA and DomainNet, we set the initial 1K steps
as warm-up stage where only the cross-entropy loss are applied on source samples. We use random cropping and random
horizontal flips for data augmentation in training.

H-score. Here, we present the formulation of H-score [3]:

h = 2 · aC · aC̄t
aC + aC̄t

, (8)

where aC and aC̄t denote the instance accuracy on common class and private class, respectively. This evaluation metric is
high only both aC and aC̄t are high, so that emphasizes the recognition of both common samples and private samples.

E. Visualization

Init Model 1K iterations 3K iterations 5K iterations

Figure B. t-SNE [12] plot of target samples at different training stages in D → A of Office-31 (Best viewed in color). In the first row,
different colors represent different classes; in the second row, purple dots denote common samples while red ones denotes private samples.

In Fig. B, we present the target feature visualization in the transfer D→A of Office-31. As shown in these figures, we
could observe that both common samples and private samples are aggregated into discriminative clusters, which is consistent
with the motivation of DCC. Moreover, the inter-cluster discrepancies are gradually enlarged as training progress, which
verifies the effectiveness of the prototypical regularizer.
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