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Appendix
A. Implementation Details

Losses in Stage II. Complexity penalty loss Lcplx is used to
increase the model efficiency in training stage II. To provide
a stable and fair constraint, we use the number of multiply-
adds on the fly, MAdds(X , θ), as the metrics of model com-
plexity. Specifically, the complexity penalty is given by:

Lcplx(X , θ) = (
MAdds(X , θ)

T
)2, (1)

where T is a normalize factor set to the total MAdds of the
supernet in our implementation. Note that this loss term
always pushes the gate to route towards a faster architecture,
towards an architecture with target MAdds, which can effec-
tively prevent routing easy and hard instances to the same
architecture.

Overall, the slimming gate can be optimized with a joint
loss function:

L(X , θ) = λ1Lcls + λ2Lcplx + λ3LSGS . (2)

The three balancing factors are set to λ1 = 1, λ2 = 0.5, λ3 = 1

in our experiments. Different target MAdds is reached by
adjusting the routing space during gate training. For instance,
when training the gate of DS-MBNet-S, we set ρ ∈ [0.35 :
0.05 : 0.5] to prevent routing to heavier sub-networks.
Equispaced channel group. Following previous works [14,
13], we set the the smallest division of channel number to
8. When using 0.05 as the interval of ρ, rounding channels
by 8 may result in different intervals, which could lead to
training failure when using Group Normalization [11]. To
prevent such problem, we always adopt a consistent interval
(e.g. 8, 16, 32) in a single layer, instead of multiplying ρ
and rounding the channel. This results in a difference of the
slimming ratio between our implemented architecture and
our design.
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Additional details. Weight decay is set to 1−4 in all of
our experiments on ImageNet. To stablize the optimization,
weight decay of all the layers in the dynamic gate is removed.
The weight γ of the last normalization layer of each residual
block is initialized to zeros following [15]. The weight of
the fully-connected layer in channel attention head, W3 in
Eqn. 9 of the main text, is also zero-initialized to ease the
optimization following [12]. Additional training techniques
include [2, 1]. We do not use label smoothing [7], DropPath
[6] and RMSProp [10], which are popularly used in previous
works [9, 4, 13, 14].

B. Experiments on EfficientNet

We also applied our method on EfficientNet [9], a state-
of-the-art network family with high efficiency. Similar to
our DS-MBNet, Dynamic Slimmable EfficientNet-B0 (DS-
EffNet) has only one slimming gate after its 8-th inverted
residual block, controlling the rest 8 blocks. The fixed slim-
ming ratio for the first 8 blocks is 0.5, while a uniform
dynamic slimming ratio ρ ∈ [0.75 : 0.05 : 1.75] is used
for the last 8 blocks. This supernet with 20 paths in total is
trained with a similar config with the supernet of DS-ResNet
and DS-MBNet.

We train the supernet with 512 total batch size using 0.2
learning rate that decays with a cosine scheduler in 150
epochs. To enable direct comparision, we opt to reproduce
the EfficientNet results using our training setup, with a 150
epoch schedule and no extra enhancement of DropPath [6],
RMSProp [10], etc.

The result is shown in Tab. 1. DS-EffNet outperforms
the original EfficientNet-B0 by 0.7% and 0.8%, proving its
efficacy on recent methods with inverted bottleneck blocks
[8] and Squeeze-and-Excitation module [5].
C. Additional Ablations

Slimming gate. We analysis the improvement brought by
slimming gate by comparing the performance of DS-Net and
its supernet. As shown in Tab. 2, slimming gate boosts the



Table 1. Comparison of EfficientNet-B0 and DS-EffNet on Ima-
geNet.

Method MAdds Top-1 Acc.

400M
MAdds

EffNet-B0 [9] (repro.) 399M 76.0
DS-EffNet-L (Ours) 400M 76.7

200M
MAdds

EffNet-B0 0.75× [9] 267M 74.6
DS-EffNet-S (Ours) 270M 75.4

Table 2. Ablation analysis of slimming gate.
model MAdds Top-1 Acc.

supernet (DS-MBNet) 140M 69.3
DS-MBNet-S 153M 70.1

supernet (DS-ResNet) 1.1B 73.4
DS-ResNet-S 1.2B 74.6

Table 3. Ablation analysis of distillation temperature τ (40 epochs).
τ slimmest widest

1 59.2 65.6
4 49.0 67.6

performance of DS-MBNet-S and DS-ResNet-S by 0.8% and
1.2% respectively, comparing to sub-networks with similar
sizes in their supernet.
Distillation temperature. Temperature τ in distillation loss
was first introduced in [3] to control the smoothness of the
target. Using a properly larger τ usually yields better per-
formance of the student. Surprisingly, we find a huge per-
formance degradation in the slimmest sub-network when
using larger τ in in-place distillation. We test τ = 4 with
DS-MBNet for 40 epochs and compare the it with the per-
formance of default setting (τ = 1). As shown in Tab. 3,
the performance of the slimmest sub-network decrease by
10.2% after applying the temperature τ = 4.
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