Supplementary Material
5.1. Training Details

As there is no parameter shared between FSCN and the
base detector, we can split the whole training process into
two separate phases. In the first detector training phase,
we train the Faster-RCNN detector F4(+) only on the base
classes Cps for the first 10 epoch, where the obtained de-
tector is denoted as F5°(-). Then, we apply the proposed
CGDP to create a clean and balanced training set Dy, which
contains both base and novel classes. Next, the classification
weights of F57(-) are set for both novel classes and back-
ground through the above introduced imprinting strategy,
the obtained ;" (-) is further fine-tuned on Dy, to obtain
the final detector F(-), while the backbone and RPN are
kept to be fixed.

For the training of FSCN, firstly, it is pre-trained on a
set of region proposals X = {(Ip;, ¢;)} sampled from Dy,
by using the pre-trained base detector F*(-), where I, is
the image patch cropped from original input space in accor-
dance of the proposal coordinates, and ¢; denotes the cor-
responding one-hot target. During this pre-training stage,
we aim to learn a good feature representation for FSCN
FP5(.), which can be easily generalized to unseen cate-
gories in future. Upon the arrival of novel classes, similarly,
the classifier of F f’f (+) are extended for those novel classes
and the background weights are also updated, denoted as
FimP (L), Next, F™(.) is further fine-tuned on the set of
region proposals sampled from Dys U D,,,, by using the fi-
nal base detector F (). Particularly, for those hard back-
grounds sampled from Dy inside each training batch, they
are first filtered by the proposed UOM strategy to get the
potential unlabeled objects of novel classes. Therefore, the
proposed distractor utilization loss is only applied on those
obtained high-possibility backgrounds, while the conven-
tional cross-entropy loss is used for the rests. In addition, we
set the intersection ratio threshold for UOM as 0.4, i.e., the
proposed distractor utilization loss is only applied to those
base-set background proposals which have intersection ra-
tio less than 0.4.

5.2. Dataset Settings

For the Pascal VOC dataset, following the common
practice, our model is trained on the union of 07 and 12
train/validation set and is evaluated on 07 test set. Follow-
ing the splitting rule of Meta-RCNN, we consider three dif-
ferent splits of base and novel classes, which are (novel:
bird, bus, cow, bike, sofa / base: the others), (novel: aero,
bottle, cow, horse, sofa / base: the others) and (boat, cat,
bike , sheep , sofa/ the other). During training, model can
only access k object instances from each novel class, where
we set k = {1,2,3,5,10} for Pascal VOC. For MS COCO
dataset, we train our model on the union of the 80k train

Table 3. Knowledge Retention on Base Classes

Methods Base Split 1 Base Split2 Base Split 3
FRCN-base 70.3 71.8 70.4
FRCN-ft 67.2 67.6 66.8
Meta-RCNN 67.9 - -
FRCN-ft + FSCN 731 73.6 72.7

Table 4. Unfreeze representation learning for TFA

Methods Novel AP Base AP
TFA 9.8 27.7
TFA-finctuned 10.8 25.9
TFA+FSCN 11.1 28.1

set and 35k trainval set, and evaluate on the Sk minival set,
with &k = {10, 30} . Considering the total 80 categories in
COCO dataset, 20 categories included in Pascal VOC are
used as novel classes, and the rest are used as base classes.

5.2.1 Unfreeze representation learning for TFA

When incrementally adding novel classes, TFA freezes the
feature representation and only finetunes the box classifier
with novel data. This could be viewed as an approach for
preserving the previously gained knowledge and countering
catastrophic forgetting. However, without optimizing fea-
tures for novel classes, the pre-trained embedding space
could be biased towards features of base classes, which
might lead to poor generalization and underfit performance
on unseen classes, especially for those classes that have
large feature discrepancy in comparison with base classes.
To verify this, we finetune the Rol feature layer with the
last two linear layers on a small balanced training set with
early stopping. We denote it as TFA-finetuned and use it
as an alternative baseline to show the superiority of our
method. As shown in Table. 4, we notice that there is a per-
formance gain 1.0 point on novel classes while 1.8 points
significant performance degradation on base classes. This
indicates that detector finetuning might bring more discrim-
inative features to novel classes and alleviate category con-
fusion. However, the worse results on overall performance
prove that finetuning representation with small data is likely
to suffer from overfitting. In contrast, we decouple the clas-
sifier finetuning and representation learning into two net-
works separately. By doing so, each branch can separately
perform its own duty for knowledge retention and novel-
class promotion. As a result, we not only enhance the fea-
ture representation for novel classes but also ensuring per-
formance on base classes does not degrade.



Table 5. Ablation Study on Distractor Utilization Loss

Methods Novel AP  Base AP
FSCN + CE 13.5 28.3
FSCN + DUL 15.6 26.8
FSCN + DUL + UOM 15.1 27.6

5.2.2 Knowledge Retention on Base Classes

To adapt a well-trained detector model to new detection
tasks, previous works usually consider jointly fine-tuning,
where base classes and novel classes are trained together on
a small balanced training set. However, a consequent issue
is that the obtained model are likely to be overfitted due to
the small amount of training samples. As a result, it suffers
from catastrophic forgetting on old categories, i.e., fails to
preserve the previous gained knowledge and leads to a per-
formance degradation on base classes. This issue is quite
common but still under-explored yet [7].

To evaluate the effectiveness of our proposed FSCN in
addressing catastrophic forgetting, we compare with three
baseline methods. In detail, FRCN-base is only trained on
the base set of Pascal VOC, where the base classes should
have the highest accuracy as the model is only trained on
the base classes. The second baseline FRCN-ft is fine-tuned
from FRCN-base on a small balanced set that contains both
base and novel classes. The third baseline Meta-RCNN also
takes the same initialization point FRCN-base for the few-
shot adaption, but with the difference of training another
meta learner. As we are only interested in the performance
of knowledge retention, CGDP is excluded from model
evaluation. The results are shown as in Table. 3. After adapt-
ing to novel classes, both FRCN-ft and Meta-RCNN suffer
from severely performance drop on base classes. In contrast,
with the help of FSCN , our framework can easily overcome
the catastrophic forgetting issue by taking the advantage of
false positive suppression, and eventually outperforms the
best performed baseline FRCN-base by a large margin.

5.2.3 Ablation Study on Distractor Utilization Loss

We compare results with three different strategy for dealing
with distractors in the training of FSCN. Experiments are
conducted on MS-COCO: (1) FSCN + CE: FSCN is trained
with the default cross-entropy loss on all datasets. (2) FSCN
+ DUL: The proposed distractor utilization loss is applied
on all background proposals sampled from the base set, but
without further training sample selection. (3) FSCN + DUL
+UOM: The proposed distractor utilization loss is only ap-
plied on the background proposals selected by UOM. Re-
sults are shown in Table 5. As we can see, FSCN + CE get
lowest accuracy on novel classes, since it blindly making
use of unlabeled objects as negative examples, the accu-
mulated discouraging gradients will enforce a classification

Table 6. Ablation Study on FSCN Architecture

Backbone Novel AP Base AP
ResNet50 51.5 72.0
ResNet101 51.3 72.3

ResNet50-CGNL 56.7 734
ResNet101-CGNL  56.9 73.8

bias to predicting novel classes into background and lead to
a catastrophic detection performance. In contrast, FSCN +
DUL achieves the best accuracy on novel classes but with
the worst performance on base classes. We conjecture that
this is because the encouraging effect to novel classes is ap-
plied on all base-set background proposals, thus the learned
classifier will be biased to predict background into novel
classes and lead to significantly performance degradation on
base classes. To this end, with the proposed adaptive sam-
ple selection, the encouraging effect is only applied to the
potential unlabeled objects, thus FSCN + DUL + UOM has
a much better base/novel accuracy trade-off over FSCN +
DUL and FSCN + CE. Due to space limitation, more abla-
tion studies are included in appendix.

5.2.4 Ablation Study on FSCN Architecture

We also study the impact of different architecture design
for the FSCN model. We compare four options, which
are (1) ResNet50 (2) ResNetl101 (3) ResNet50-CGNL(4)
ResNet101-CGNL, to verify the importance of full recep-
tive field as well as network depth. Experiments are con-
ducted on Pascal VOC dataset, and CGDP is excluded from
model evaluation. The results are shown in Table 6. Al-
though stacking more layers does provide sightly better ac-
curacy on base classes, performance on the few-shot classes
is insensitive to network depth. Regarding this, ResNet50
has a better speed/accuracy trade-off over ResNet101 and it
is also more suited for real-time applications.

We also compare the influence of adding fully recep-
tive field into FSCN, e.g ResNet50 v.s. ResNet50-CGNL.
Since CGNL module is simply a fully connected layer, these
two networks have approximately the same number of pa-
rameters. However, we only observe a marginal gain of
2.4 point with ResNet50 while our ResNet50-CGNL has a
much larger gain of 7.6 point. To this end, we conclude that
the performance gain mainly come from the global recep-
tive field rather than enabling more parameters.



