
Generalizing to the Open World: Deep Visual Odometry with Online Adaptation
Supplementary Materials

1. Learning settings
The optical flow network RAFT [3] consists of three

components: (1) shared image feature encoder, (2) 4D fea-
ture correlation cost volume (correlation layer), and (3)
RNN-based update operator. In the pretraining process, we
train all these componenets together. As for online adapta-
tion process, we deem that the extracted features may vary
a lot in different environments, while the operations on fea-
ture are less sensitive to the environment change. There-
fore, we fix correlation layer and RNN-based update opera-
tor during online adaptation and only learns feature encoder.
The iterations of update operator is set 10 for both pretrain-
ing and online learning.

We pretrain the FlowNet and DepthNet with an addi-
tional PoseNet according to the training training setting of
Competitive Collaboration [2] except that the motion seg-
mentation mask M is not learned but calculated accord-
ing to Monodepth2 [1]. The training data is augmented
with random scaling, cropping, color jittering and hori-
zontal flips. First, we pretrain FlowNet and DepthNet +
PoseNet separately to get basic model parameters. Then
we iteratively train FlowNet, DepthNet and PoseNet while
keeping the other network weights fixed. While for online
adaptation, we discard the PoseNet and use Essential matrix
+ PnP to solve pose.

Self-supervised learning of single-view depth estima-
tion favors image sequences with small rotations and suf-
ficient translations. However, in contrast to outdoor driving
scenes (Cityscapes and KITTI), indoor datasets (TUM and
NYUv2) usually have large rotations and small translations.
In order to alleviate this issue, we increase the image trans-
lation by downsampling the videos by extracting one frame
from every 10 frames.

During online adaptation, our VO framework achieves
10-14 fps including network forward inference, pose cal-
culation, depth refinement, loss computation and network
updating by gradient descent. The speed may vary slightly
due to different RANSAC iterations for convergence.

The insights of learning dense flow rather than sparse
matches are twofold: 1) self-supervised learning of sparse
matches is challenging since photometric loss, as the only
data term, is incapable of learning discriminative matches.

In contrast, the learned dense optical flow is assumed gener-
ally accurate if the photometric loss becomes small enough;
2) optical flow, depth and pose are correlated by well-
defined geometric constraint (i.e. scene flow). During self-
supervised learning, the depth and flow networks will mu-
tually help each other learn better estimations.

2. Updating of depth parameters
In the Section 3.2-3.3 of the original paper, the MAP of

inverse depth z can be approximated [4] by the product of a
Gaussian distribution for z and a Beta distribution for inlier
ratio ρ:

q(z, ρ|at, bt, µt, σ
2
t ) := Beta(ρ|at, bt)N (zt|µt, σ

2
t ), (1)

The parameter updating rules of at, bt, µt, σ
2
t are listed as

follows. For every new estimation zt, the MAP of parame-
ters is solved iteratively:

q(z, ρ|at, bt, µt, σ
2
t ) =p(zt|z, ρ)×

q(z, ρ|at−1, bt−1, µt−1, σ
2
t−1),

(2)

where:

p(zt|z, ρ) = ρN (zt|z, τ2) + (1− ρ)U(zt|zmin, zmax). (3)

Therefore, Eq. 2 can be written as:

q(z, ρ|at, bt, µt, σ
2
t ) =

[ρN (zt|z, τ2) + (1− ρ)U(zt|zmin, zmax)]×
Beta(ρ|at−1, bt−1)N (z|µt−1, σ

2
t−1).

(4)

During calculation, the multiplication of two Gaussian
distributions can be written as:

N (zt|z, τ2)N (z|µt−1, σ
2
t−1) =

N (zt|µt−1, τ
2 + σ2

t−1)N (z|m, s2)
(5)

where:
1

s2
=
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σ2
t−1

+
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τ2

m = s2(
µt−1

σ2
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+
zt
τ2

)
(6)
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In addition, since:

Γ(a, b) =
1

ρ

a

a+ b
Γ(a+ 1, b) =

1

1− ρ
b

a+ b
Γ(a, b+ 1)

(7)
Combining Eq. 5,6,7, Eq. 4 can be written as:

q(z, ρ|at, bt, µt, σ
2
t ) =

C1N (z|m, s2)Beta(ρ|at−1, bt−1)+

C2N (z|µt−1, σ
2
t−1)Beta(ρ|at−1, bt−1 + 1))

(8)

where:

C1 =
at−1

at−1 + bt−1
N (zt|µt−1, τ

2 + σ2
t−1)

C2 =
bt−1

at−1 + bt−1
U(zt|zmin, zmax)

(9)

For convenience, we normalize C1, C2:

C
′

1 =
C1

C1 + C2

C
′

2 =
C2

C1 + C2

(10)

Therefore, the mean and variance of the inverse depth are
updated by:

µt = C
′

1m+ C
′

2µt−1 (11)

σ2
t = C

′

1(s2 +m2) + C
′

2(σ2
t−1 + µ2

t−1) (12)

In order to update a, b in Beta distribution, we introduce
e and f for convenience:

e =
at(at + 1)

(at + bt)(at + bt + 1)

=C
′

1

(at + 1)(at + 2)

(at + bt + 1)(at + bt + 2)
+

C
′

2

at(at + 1)

(at + bt + 1)(at + bt + 2)

(13)

f =
at

at + bt
=C

′

1

at−1 + 1

at−1 + bt−1 + 1
+

C
′

2

at−1

at−1 + bt−1 + 1

(14)

Then at, bt are updated as follows:

at =
e− f
f − e

f

(15)

bt =
1− f
f

at (16)

During depth refinement, the depth of remaining pixels
will not be refined. However, in many cases the selected
patches will cover the majority of depth map in a very short
time (e.g. the case shown in Figure 3 in the original paper
takes only 4 time steps), indicating that the majority of the
keyframe depth will be refined.

3. Scale alignment for triangulated points

The mid-point triangulation method may get negative
depth due to the numerical issue. Therefore, we assess each
correspondence pair with respect to the angle of camera rays
and filter out the ones around epipoles. We also filter the tri-
angulated points with negative depth or ones projected out
of the image region.

We use the selected sparse depth points for scale align-
ment. The scale is solved by aligning the calculated
sparse depth with the corresponding depth position in the
keyframe. We use RANSAC to increase the robustness of
scale estimation. If the inlier count is still not enough after
maximum iterations, we calculate the scale by aligning the
median with triangulated and keyframe depth.

4. Additional VO results on TUM

We show more qualitative trajectory results on TUM
dataset in Fig. 1 and Fig. 2. All these methods are pre-
trained on outdoor KITTI dataset and directly tested on in-
door TUM dataset. When confronted with large domain
shift, existing methods tend to fail while our method still
recovers reasonable trajectories. It should be noted that we
do not use re-localization and loop closure as did in classic
methods to boost VO performance.

5. Depth results on NYUv2

We present single-view depth estimation results com-
pared with Zhao et al. [6] and P2Net [5]. The qualitative
results on NYUv2 dataset are shown in Fig. 3. It can be
seen that our method is able to recover more details and
sharper edges than the other methods.

6. Qualitative results of ablation studies

We present qualitative results of ablation studies on var-
ious versions of our method. Fig. 4 shows the results that
pretrained on KITTI and tested on TUM dataset. w/o RDS
means without refined depth for online self-supervision;
w/o RU means without predicted photometric uncertainty
map. It can be seen that the trajectory error increases a
lot if the refined depth is not used for self-supervision. In
this case, the DepthNet is only learned by minimizing pho-
tometric loss, the convergence speed is much slower than
supervising DepthNet with refined depth. Therefore, when
facing large domain shift, the refined depth helps VO frame-
work to maintain stable tracking and speeds up the online
adaptation considerably.

Besides, it can be seen that the online learned photomet-
ric uncertainty (w/o PU) helps a lot on KITTI and TUM for
pose estimation. This is because it downweights the regions
with photometric inconstancy, occlusions and dynamic ob-
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Figure 1. Additional visual odometry results on indoor TUM dataset.

jects, which helps recover more accurate pose by minimiz-
ing weighted photometric loss.
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Figure 2. Additional visual odometry results on indoor TUM dataset.
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Figure 3. Single-view depth estimation results on NYUv2 dataset.
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Figure 4. Ablation studies on various versions of our method that are pretrained on KITTI and tested on TUM dataset. w/o RDS: without
refined depth for self-supervision, w/o RU: without predicted photometric uncertainty map.
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