Hilbert Sinkhorn Divergence for Optimal Transport
Supplementary

Qian Li1* Zhichao Wang2† Gang Li3 Jun Pang4 Guandong Xu1
1 Faculty of Engineering and Information Technology, University of Technology Sydney, Australia
2 School of Electrical Engineering and Telecommunications, University of New South Wales, Australia
3 Centre for Cyber Security Research and Innovation, Deakin University, Geelong, VIC 3216, Australia
4 Faculty of Science, Technology and Medicine, University of Luxembourg

{qian.li, guandong.xu}@uts.edu.au, zchaoking@gmail.com, gang.li@deakin.edu.au, jun.pang@uni.lu

In this supplementary material, we provide the proofs of all theorems and propositions in the paper.

Definition 1 (Hilbert Sinkhorn divergence, HSD). Given measures µ, ν ∈ P(X) and elements u, v ∈ H, the Hilbert Sinkhorn divergence between embedding φ∗µ and φ∗ν is written as

\[S_\epsilon (φ_\ast \mu, φ_\ast \nu) = \inf_{\pi_\phi} \int_{H \times H} c_\phi(u, v) d\pi_\phi(u, v) + \epsilon \Phi(\pi_\phi) \] (1)

where \(\pi_\phi \in \Pi (\phi_\ast \mu, \phi_\ast \nu) \) is a joint probability measure with two marginals \(\phi_\ast \mu \) and \(\phi_\ast \nu \), and

\[c_\phi(u, v) = \| u - v \|^2_H \]

\[\Phi(\pi_\phi) = \log \left(\frac{d\pi_\phi}{d(\phi_\ast \mu) d(\phi_\ast \nu)}(u, v) \right) \]

Definition 2 (Hilbert embedding). Let P(X) be the set of probability measures on sample set X and P(H) be the set of probability measures on reproducing kernel Hilbert space H. Given a probability measure \(\mu \in P(X) \), the implicit feature map \(\phi : X \to H \) will induce the Hilbert embedding of \(\mu \):

\[\phi_\ast : P(X) \to P(H), \mu \mapsto \phi_\ast \mu = \int_X \phi(x) d\mu(x) \] (2)

For the map \((\phi, \phi) : X \times X \to H \times H\), we similarly have

\[(\phi_\ast, \phi_\ast) : (\mu, \nu) \mapsto (\phi_\ast \mu, \phi_\ast \nu) \] (3)

Definition 3 (Hilbert Sinkhorn divergence). Given measures µ, ν ∈ P(X) and elements u, v ∈ H, the Hilbert Sinkhorn divergence between embedding \(\phi_\ast \mu \) and \(\phi_\ast \nu \) is written as

\[S_\epsilon (\phi_\ast \mu, \phi_\ast \nu) = \inf_{\pi_\phi} \int_{H \times H} c_\phi(u, v) d\pi_\phi(u, v) + \epsilon \Phi(\pi_\phi) \] (4)

where \(\pi_\phi \in \Pi (\phi_\ast \mu, \phi_\ast \nu) \) is a joint probability measure with two marginals \(\phi_\ast \mu \) and \(\phi_\ast \nu \), and

\[c_\phi(u, v) = \| u - v \|^2_H \]

\[\Phi(\pi_\phi) = \log \left(\frac{d\pi_\phi}{d(\phi_\ast \mu) d(\phi_\ast \nu)}(u, v) \right) \]

Definition 4. Given measurable spaces \((X_1, \Sigma_1)\) and \((X_2, \Sigma_2)\), a measurable mapping \(f : X_1 \to X_2 \) and a measure \(\mu : \Sigma_1 \to [0, +\infty] \), the pushforward of \(\mu \) is defined to be the measure \(f_\ast(\mu) : \Sigma_2 \to [0, +\infty] \) given by

\[(f_\ast(\mu))(B) = \mu(f^{-1}(B)) \] for \(B \in \Sigma_2 \) (5)

*Equal contribution
†Corresponding author
1. Proving Theorem 1

Theorem 1. Given two measures $\mu, \nu \in \mathbb{P}(X)$, we write

$$S_{H,\epsilon}(\mu, \nu) = \inf_{\pi} \int_{X \times X} c_H(x, y) d\pi(x, y) + \epsilon H(\pi)$$

(6)

where $\pi \in \Pi(\mu, \nu)$ is the joint probability measure on $X \times X$ with marginals μ and ν, and

$$c_H(x, y) = ||\phi(x) - \phi(y)||^2_H = k(x, x) + k(y, y) - 2k(x, y)$$

Then we have the following conclusions:

- If π^* is a minimizer of (6), its Hilbert embedding $(\phi, \phi)_{\pi^*}$ is a minimizer of (4).

Proof. Applying the pushforward map in (5), we have $((\phi, \phi)_{\pi^*} (u, v) = \pi (\phi^{-1}(u), \phi^{-1}(v)) = \pi(x, y)$. Thus, the HSD is reformulated as

$$S_{H,\epsilon}(\mu, \nu) = \inf_{\pi \in \Pi(\mu, \nu)} \int_{X \times X} ||\phi(x) - \phi(y)||^2_H d\pi(x, y) + \epsilon \log \left(\frac{d\pi}{d\mu d\nu}(x, y) \right)$$

(7)

on the other hand, for all $\pi \in \Pi(\mu, \nu),

$$\int_{X \times X} \left(||u - v||^2_H + \epsilon \log \left(\frac{d\pi}{d\mu d\nu}(x, y) \right) \right) d\pi(x, y)$$

$$\geq \inf_{\pi \in \Pi(\mu, \nu)} \int_{X \times X} \left(||\phi(x) - \phi(y)||^2_H + \epsilon \log \left(\frac{d\pi}{d\mu d\nu}(x, y) \right) \right) d\pi(x, y)$$

$$= S_{H,\epsilon}(\mu, \nu)$$

Take the infimum on $\pi_{\phi} \in \Pi((\phi, \phi)_{\mu, \nu})$ over domain $H \times H$, the inequality (8) remains hold. That is $S_{\epsilon}(\phi, \phi, \phi, \nu) \geq S_{H,\epsilon}(\mu, \nu)$. Therefore, combining (7) and (8) achieves

$$S_{\epsilon}(\phi, \phi, \phi, \nu) = S_{H,\epsilon}(\mu, \nu)$$

(9)

If π^* is a minimizer of (6), then

$$S_{H,\epsilon}(\mu, \nu)$$

$$= \int_{X \times X} \left(||\phi(x) - \phi(y)||^2_H + \epsilon \log \left(\frac{d\pi^*}{d\mu d\nu}(x, y) \right) \right) d\pi^*(x, y)$$

(10)
which implies that $(\phi, \phi)_* \pi^*$ is a minimizer of (4).

2. Proving Proposition 1

Proposition 1 (Variational representation). The KL divergence admits the following variational representation in the reproducing kernel Hilbert space:

$$S_\epsilon (\phi_* \mu, \phi_* \nu) = \epsilon \left(1 + \min_{\pi_\phi} \mathbb{E}_{\pi_\phi} [T] - \log \left(\mathbb{E}_{\xi_\phi} \left[e^T \right] \right) \right)$$

where the infimum is taken over $\pi_\phi \in \Pi (\phi_* \mu, \phi_* \nu)$, $\xi_\phi (x, y) = e^{-d(x, y)/\epsilon}$ and function $T = \log \frac{d\pi_\phi}{d\xi_\phi} + C$ for some constant $C \in \mathbb{R}$.

Proof. Step 1: Given an absolutely continuous measure $\pi_\phi \in \mathbb{P}(H \times H)$ and a positive function ξ_ϕ on $H \times H$, we define the Kullback-Leibler (KL) divergence

$$\text{KL}(\pi_\phi \mid \xi_\phi) = \int_{H \times H} \pi(u, v) \left[\ln \frac{\pi(u, v)}{\xi(u, v)} - 1 \right] du dv$$

We can associate $\|u - v\|^2_H$ to a Gibbs distribution $\xi_\phi (u, v) = e^{-\|u - v\|^2_H / \epsilon}$, then $\|u - v\|^2_H = -\epsilon \ln \xi_\phi (u, v)$

By combining KL divergence (12) and Gibbs distribution (13) algebraically, Hilbert Sinkhorn divergence (4) can be computed as the smallest KL divergence between coupling π_ϕ and Gibbs distribution ξ_ϕ in the reproducing kernel Hilbert space:

$$S_\epsilon (\phi_* \mu, \phi_* \nu) = \epsilon \left(1 + \min_{\pi_\phi} \mathbb{E}_{\pi_\phi} [T] - \log \left(\mathbb{E}_{\xi_\phi} \left[e^T \right] \right) \right)$$

Step 2. We use Donsker-Varahan representation for KL divergence

$$\text{KL}(\pi_\phi \mid \xi_\phi) = \sup_{T: H \times H \rightarrow \mathbb{R}} \mathbb{E}_{\pi_\phi} [T] - \log \left(\mathbb{E}_{\xi_\phi} \left[e^T \right] \right)$$

A simple proof of (15) is as follows: for a given function T, let us consider the Gibbs distribution G defined by $dG = \frac{1}{Z} e^T d\xi_\phi$, where $Z = \mathbb{E}_{\xi_\phi} \left[e^T \right]$. By construction

$$\mathbb{E}_{\pi_\phi} [T] - \log Z = \mathbb{E}_{\pi_\phi} \left[\log \frac{dG}{d\xi_\phi} \right]$$

Let Δ be the gap,

$$\Delta := \text{KL}(\pi_\phi \mid \xi_\phi) - \left(\mathbb{E}_{\pi_\phi} [T] - \log \left(\mathbb{E}_{\xi_\phi} \left[e^T \right] \right) \right)$$

Using Eq. (16), we can write Δ as the KL-divergence:

$$\Delta = \mathbb{E}_{\pi_\phi} \left[\log \frac{d\pi_\phi}{d\xi_\phi} - \log \frac{dG}{d\xi_\phi} \right] = \mathbb{E}_{\pi_\phi} \log \frac{d\pi_\phi}{dG} = \text{KL}(\pi_\phi \parallel G)$$

For KL-divergence, we have $\Delta \geq 0$ in (17). Thus, it can be shown that for any T,

$$\text{KL}(\pi_\phi \parallel \xi_\phi) \geq \mathbb{E}_{\pi_\phi} [T] - \log \left(\mathbb{E}_{\xi_\phi} \left[e^T \right] \right)$$

and the inequality also holds for taking the supremum on the right side. Finally, the identity (18) also shows that $\Delta = 0$ whenever $G = \pi_\phi$, i.e., optimal functions T has the form

$$T = \log \frac{d\pi_\phi}{d\xi_\phi} + C$$

for some constant $C \in \mathbb{R}$. Combining (14), (15) and (20), we achieve the conclusion.
3. Proving Proposition 2

Proposition 2 (Lower bound). The Hilbert Sinkhorn distance has the following lower bound:

$$S_\epsilon(\phi, \mu, \phi, \nu) \geq \epsilon \left(1 + \min_{\pi \in \Pi(\mu, \nu)} \mathbb{E}_\pi[k] - \log \left(\mathbb{E}_{\xi}[e^k] \right) \right)$$

where $\epsilon > 0$, ϕ, μ and ϕ, ν are Hilbert embedding in Eq. (2) and k is a kernel function.

Proof. KL divergence (15) in product space $H \times H$ satisfies

$$\text{KL}(\pi \ | \ \phi) = \sup_{T : H \times H \to [0, \infty]} \mathbb{E}_{\pi}[T] - \log \left(\mathbb{E}_{\phi}[e^T] \right)$$

By (14) and (22), given a kernel function k is a kernel function. Hence, we continue (21) to get

$$\geq \sup_{T \in \mathcal{M}} \int_{\Omega \times \Omega} T(\phi(x), \phi(y))d\pi(x, y) - \log \int_{\Omega \times \Omega} e^{T(\phi(x), \phi(y))}d\xi$$

By (22) and (14), given a kernel function k we have the lower bound

$$S_\epsilon(\phi, \mu, \phi, \nu) = \epsilon \left(1 + \min_{\pi \in \Pi(\mu, \nu)} \text{KL}(\pi \ | \ \phi) \right)$$

$$\geq \epsilon \left(1 + \min_{\pi \in \Pi(\mu, \nu)} \mathbb{E}_\pi[k] - \log \left(\mathbb{E}_{\xi}[e^k] \right) \right)$$

Since $S_{H,\epsilon}(\mu, \nu) = S_\epsilon(\phi, \mu, \phi, \nu)$ as provided in Theorem [1]. As a consequence, we directly have the following result by using Proposition [1] and [2].

Corollary 1. The reformulation (2) admits the following variational representation and lower bound:

$$S_{H,\epsilon}(\mu, \nu) = \epsilon \left(1 + \min_{\pi \in \Pi(\mu, \nu)} \mathbb{E}_\pi[T] - \log \left(\mathbb{E}_{\phi}[e^T] \right) \right)$$

$$S_{H,\epsilon}(\mu, \nu) \geq \epsilon \left(1 + \min_{\pi \in \Pi(\mu, \nu)} \mathbb{E}_\pi[k] - \log \left(\mathbb{E}_{\xi}[e^k] \right) \right)$$

The related notations are defined in Prop [7] and [2].
5. Proving Theorem 2

Theorem 2 (Strong consistency). Given empirical measures μ_n, ν_n and $\epsilon, \eta > 0$, there exists $N > 0$ such that
\[
\forall n \geq N, \ P (|S_{H,e}(\mu_n, \nu_n) - S_{H,e}(\mu, \nu)| \leq \epsilon \eta) = 1
\] (24)

Proof. We assume that π_ϕ is the optimal of problem [14] and $\pi_{\phi,n}$ is the optimal of problem
\[
S_{H,e} (\mu_n, \nu_n) = \epsilon \left(1 + \min_{\pi_{\phi,n} \in \Pi_{\phi,n}} : \text{KL} (\pi_{\phi,n} \mid \xi_{\phi,n}) \right)
\] (25)

Then we start by using [15] and the triangular inequality to write,
\[
|S_{H,e} (\mu_n, \nu_n) - S_{H,e}(\mu, \nu)| \leq \epsilon \left(\sup_{T : H \times H \rightarrow \mathbb{R}} |E_{\pi_{\phi,n}}[T] - E_{\pi}[T]| + \sup_{T : H \times H \rightarrow \mathbb{R}} |\log (E_{\pi_{\phi,n}}[e^T]) - \log (E_{\xi_{\phi,n}}[e^T])| \right)
\] (26)

It is reasonable to assume that functions T are uniformly bounded by a constant M, i.e $\|T\|_{H} \leq M$ in reproducing kernel Hilbert space. Since \log is Lipschitz continuous with constant e^M in the interval $[e^{-M}, e^M]$, we have
\[
|\log (E_{\xi_{\phi,n}}[e^T]) - \log (E_{\xi_{\phi,n}}[e^T])| \leq e^M |E_{\xi_{\phi,n}}[e^T] - E_{\xi_{\phi,n}}[e^T]|
\] (27)

The families of functions T and e^T satisfy the uniform law of large numbers [3] [5] [4]. Given $\eta > 0$, we can thus choose $N \in \mathbb{N}$ such that $\forall n \geq N$ and with probability one,
\[
\sup_{T : H \times H \rightarrow \mathbb{R}} |E_{\pi_{\phi,n}}[T] - E_{\pi}[T]| \leq \frac{\eta}{2} \quad \text{and} \quad \sup_{T : H \times H \rightarrow \mathbb{R}} |\log (E_{\pi_{\phi,n}}[e^T]) - \log (E_{\xi_{\phi,n}}[e^T])| \leq \frac{\eta}{2} e^{-M}
\] (28)

Substituting Eqs. (28) and (22) into (26) leads to
\[
\forall n \geq N, \ |S_{H,e}(\mu_n, \nu_n) - S_{H,e}(\mu, \nu)| \leq \frac{\epsilon \eta}{2} + \frac{\epsilon \eta}{2} = \epsilon \eta
\] (29)

with probability one. \(\square\)

5. Proving Proposition 3

Proposition 3 (approximation error). Let sample space X be a subset of \mathbb{R}^d and be $|X| = \sup \{ \|x - y\| \mid x, y \in X\}$, we have
\[
|S_{H,e}(\mu, \nu) - W_e(\mu, \nu)| \leq \epsilon \eta
\]
\[
|S_{H,e}(\mu, \nu) - W(\mu, \nu)| \leq \epsilon \left(\eta + 2d \log e^{2LD} \sqrt{d\epsilon} \right)
\] (30)

where $\epsilon > 0$, $D \geq |X|$ and L is a Lipschitz constant.

Proof. Step 1. Notice that we can follow the idea of Proposition [1] to construct the following representation in Euclidean space
\[
W_e(\mu, \nu) = \epsilon \left(1 + \min_{\pi \in \Pi(\mu, \nu)} E_{\pi}[T] - \log (E_{\xi}[e^T]) \right)
\] (31)

where $\xi(x, y) = e^{-d(x,y)/\epsilon}$ and function $T = \log \frac{d\pi}{d\mu}$. By construction, T satisfies $E_{\xi}[e^T] = f d\pi = 1$.

Without loss of generality, we assume that π makes the minimum of $E_{\pi}[K] - \log (E_{\xi}[e^K])$ appeared in (??). Then
\[
W_e(\mu, \nu) - S_{H,e}(\mu, \nu) \leq \epsilon (E_{\pi}[T] - \log (E_{\xi}[e^T])) - \epsilon (E_{\pi}[K] - \log (E_{\xi}[e^K])) \text{ by } (31) \text{ and } (??)
\]
\[
= \epsilon ((E_{\pi}[T] - \log 1) - E_{\pi}[K] + \log (E_{\xi}[e^K]))
\]
\[
= \epsilon ((E_{\pi}[T] - E_{\pi}[K]) + \log (E_{\xi}[e^K]))
\]
\[
\leq \epsilon ((E_{\pi}[T] - E_{\pi}[K]) + (E_{\xi}[e^K] - 1))
\]
\[
= \epsilon ((E_{\pi}[T - K]) + (E_{\xi}[e^K] - e^T)))
\] (32)
where we used the inequality $\log x \leq x - 1$.

Step 2. Fix $\eta > 0$. We first consider the case where $\|T\| \leq M$ is bounded. By the universal approximation theorem [2], we can choose a kernel function $K \leq M$ such that
\[
\mathbb{E}_x |T - K| \leq \frac{\eta}{2} \quad \text{and} \quad \mathbb{E}_x |T - K| \leq \frac{\eta}{2} e^{-M}
\] (33)

Since exp is Lipschitz continuous with constant e^M on $(-\infty, M]$, we have
\[
\mathbb{E}_x |e^T - e^K| \leq e^M \mathbb{E}_x |T - K| \leq \frac{\eta}{2}
\] (34)

From (32) - (34) and the triangular inequality, we then obtain
\[
|W_\epsilon(\mu, \nu) - S_{\mathcal{H}, \epsilon}(\mu, \nu)| \leq \epsilon \left(|\mathbb{E}_x |T - K|\right) + \mathbb{E}_x [e^T - e^K] | \leq \epsilon |
\] (35)

which proves (30).

Step 3. In this step, we are interested in bounding the error made when approximating $W(\mu, \nu)$ with $S_{\mathcal{H}, \epsilon}(\mu, \nu)$. Assume \mathcal{X} is the subsets of \mathbb{R}^d, the diameter $|\mathcal{X}| = \sup \{|x - x'| \mid x, x' \in \mathcal{X}\} \leq D$ and the cost function is L-Lipschitz. Then it holds [1]
\[
W_\epsilon(\mu, \nu) - W(\mu, \nu) \leq 2ed \log \frac{e^2LD}{\sqrt{d \epsilon}}
\] (36)

From (35), (36) and the triangular inequality, we then obtain
\[
|S_{\mathcal{H}, \epsilon}(\mu, \nu) - W(\mu, \nu)| \leq \epsilon \left(\eta + 2d \log \frac{e^2LD}{\sqrt{d \epsilon}} \right)
\] (37)

\[\square\]

6. Proving Theorem 3

Theorem 3 (asymptotic bound). The Hilbert Sinkhorn estimator $S_{\mathcal{H}, \epsilon}(\mu_n, \nu_n)$ approximates the Wasserstein distance $W(\mu, \nu)$ with the following bound,
\[
\forall n \geq N, \quad \mathbb{P} (|S_{\mathcal{H}, \epsilon}(\mu_n, \nu_n) - W(\mu, \nu)| \leq \zeta) = 1
\] (38)

where $\zeta = 2e \left(\eta + d \log \frac{e^2LD}{\sqrt{d \epsilon}} \right)$.

Proof. Let $\eta > 0$. We find a kernel function and $N > 0$ such that (24) and (30) hold. By the triangular inequality, for all $n \geq N$ and with probability one, we have:
\[
|S_{\mathcal{H}, \epsilon}(\mu_n, \nu_n) - W(\mu, \nu)| \leq |S_{\mathcal{H}, \epsilon}(\mu_n, \nu_n) - S_{\mathcal{H}, \epsilon}(\mu, \nu)| + |S_{\mathcal{H}, \epsilon}(\mu, \nu) - W(\mu, \nu)| \leq \zeta
\]

where $\zeta = 2e \left(\eta + d \log \frac{e^2LD}{\sqrt{d \epsilon}} \right)$ \[\square\]

7. Proving Theorem 4

Lemma 1. [6] We assume that arbitrary function $f \in \mathcal{H}$ is bounded (i.e., $\|f\|_{\mathcal{H}} \leq M$). Given the covering disk $B_\eta = \{ f \in \mathcal{H} : \|f\|_{\mathcal{H}} \leq \eta \}$, the covering number of \mathcal{H} is
\[
N(\mathcal{H}, \eta) \leq \left(\frac{3M}{\eta} \right)^m
\] (39)

where m is the number of basis that span the function f.

Theorem 4. Given the desired accuracy parameters $\eta, \epsilon > 0$ and the confidence parameter η, we have,
\[
\mathbb{P} (|S_{\mathcal{H}, \epsilon}(\mu, \nu) - S_{\mathcal{H}, \epsilon}(\mu_n, \nu_n)| \leq \epsilon \eta) \geq 1 - \delta,
\] (40)

whenever the number n of samples satisfies
\[
n \geq \frac{2M^2(\log(2/\delta) + m \log(24M/\eta))}{\eta^2}
\] (41)

where m and M are given in Lem. [7]
Proof. Assume functional T is M-bounded and L-Lipschtiz in reproducing kernel Hilbert space. By Hoeffding inequality, for all function $|f| \leq M$

$$\Pr \left(\left| \mathbb{E}_\mu f - \mathbb{E}_{\mu,n} f \right| > \frac{\eta}{4} \right) \leq 2 \exp \left(-\frac{\eta^2 n}{2M^2} \right) \tag{42}$$

To extend this inequality to a uniform inequality over all functions T and ϵ^T, the standard technique is to choose a minimal cover of Hilbert space by a finite set of small balls with radius η. We need to choose a minimal cover number of the domain $B_R = \{ T \in \mathcal{H} : \|T\|_H \leq R \}$ by a finite set of small balls with radius η such that $B_R \subset \bigcup_j B_\eta \{T_j\}$. As given in Lemma 1, the minimal cardinality of such covering is bounded by the covering number such that

$$\mathcal{N}(\mathcal{H}, \eta) \leq \left(\frac{3M}{\eta} \right)^{m} \tag{43}$$

Successively applying the union bound in (42) with the set of functions $\{T_j\}$ to get

$$\Pr \left(\sup_j \left| \mathbb{E}_{\pi,\eta} [T_j] - \mathbb{E}_{\pi,\eta,n} [T_j] \right| \geq \frac{\eta}{4} \right) \leq 2 \mathcal{N}(\mathcal{H}, \eta) \exp \left(-\frac{\eta^2 n}{2M^2} \right) < \delta \tag{44}$$

which gives

$$\Pr \left(\sup_j \left| \mathbb{E}_{\pi,\eta} [T_j] - \mathbb{E}_{\pi,\eta,n} [T_j] \right| \leq \frac{\eta}{4} \right) > 1 - \delta \tag{45}$$

We now choose small ball radius $\lambda = \eta/8L$. Then solving $2 \mathcal{N}(\mathcal{H}, \eta) \exp \left(-\frac{\epsilon^2 n}{2M^2} \right) \leq \delta$ for sample number n in (44) to get

$$n \geq \frac{2M^2(\log(2/\delta) + m \log(24ML/\eta))}{\eta^2} \tag{46}$$

We deduce from (45) and L-Lipschtiz of $|T - T_j| \leq L\eta = \epsilon/8$, with probability $1 - \delta$, for all T and T_j

$$\left| \mathbb{E}_{\pi,\eta} [T] - \mathbb{E}_{\pi,\eta,n} [T] \right| \leq \left| \mathbb{E}_{\pi,\eta} [T] - \mathbb{E}_{\pi,\eta} [T_j] \right| + \left| \mathbb{E}_{\pi,\eta} [T_j] - \mathbb{E}_{\pi,\eta,n} [T_j] \right| + \left| \mathbb{E}_{\pi,\eta,n} [T_j] - \mathbb{E}_{\pi,\eta,n} [T] \right|$$

$$\leq \frac{\eta}{8} + \frac{\eta}{4} + \frac{\eta}{8}$$

$$= \frac{\eta}{2} \tag{47}$$

Similarly, we also obtain that for all functions ϵ^T, with probability at least $1 - \delta$,

$$\left| \log \mathbb{E}_{\xi,\eta} [\epsilon^T] - \log \mathbb{E}_{\xi,\eta,n} [\epsilon^T] \right| \leq \frac{\eta}{2} \tag{48}$$

Finally, using (20), (47) and (48), for all T

$$|S_{\mathcal{H},\epsilon} (\mu_n, \nu_n) - S_{\mathcal{H},\epsilon} (\mu, \nu)|$$

$$\leq \epsilon \left(\sup_T \left| \mathbb{E}_{\pi,\eta,n} [T] - \mathbb{E}_{\pi,\eta} [T] \right| + \sup_T \left| \log \left(\mathbb{E}_{\xi,\eta} [\epsilon^T] \right) - \log \left(\mathbb{E}_{\xi,\eta,n} [\epsilon^T] \right) \right| \right)$$

$$\leq \epsilon \left(\frac{\eta}{2} + \frac{\eta}{2} \right)$$

$$= \epsilon \eta \tag{49}$$

References

