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In this supplementary material, we provide the proofs of all theorems and propositions in the paper.

Definition 1 (Hilbert Sinkhorn divergence, HSD). Given measures j,v € P(X) and elements u,v € H, the Hilbert Sinkhorn
divergence between embedding ¢. v and ¢.v is written as

Se (Papt, psv) = inf co(u, v)dmy(u, v) + e®(my) (1)
o JHXH
where 1y € I1 (.1, G+V) is a joint probability measure with two marginals ¢,y and ¢.v, and
co(u,v) = [lu—vll3
d7T¢

o) = (g )

Definition 2 (Hilbert embedding). Let P(X') be the set of probability measures on sample set X and P(H) be the set of
probability measures on reproducing kernel Hilbert space H. Given a probability measure |1 € P(X), the implicit feature map
¢ : X — H will induce the Hilbert embedding of .

6o s P(X) > P(H), o dopt = /X o) du(x) @)

For the map (¢, ¢) : X x X — H x H, we similarly have
(¢a ¢)* : (luv V) — ((ZS*:UH QS*V) (3)

Definition 3 (Hilbert Sinkhorn divergence). Given measures u,v € P(X) and elements u,v € H, the Hilbert Sinkhorn
divergence between embedding ¢ and ¢,v is written as

Se (dupt, duv) = inf o (u,v)dmy(u, v) + €®(my) 4)
o JHXH
where g € I1(Pspt, @41) is a joint probability measure with two marginals ¢..p and ¢.v, and
co(u,v) = [lu = vl3

dm
w0 = (75 15 )

Definition 4. Given measurable spaces (X1,%1) and (X2,%s), a measurable mapping f : X1 — X5 and a measure
X1 — [0, +00], the pushforward of  is defined to be the measure f.(u) : 3o — [0, +00] given by

(fe(w) (B) = (f~*(B)) for B € %, 5)
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1. Proving Theorem 1

Theorem 1. Given two measures j,v € P(X), we write

Sy.e(p,v) = inf cy(x,y)dn(x,y) + eH () (6)

T Jxxx

where € Il(u, v) is the joint probability measure on X x X with marginals y and v, and

en(z,y) = lo(x) — oW)3, = k(z,2) + k(y, y) — 2k(x, y)

() = tog (5 (@)

Then we have the following conclusions:
* Spe(p,v) = Se (Pupt, duv)
o If m* is a minimizer of (@), its Hilbert embedding (¢, ¢).m* is a minimizer of (@).
Proof. Applying the pushforward map in (3), we have ((¢, ¢).7) (u,v) = 7 (¢~ *(u), ¢~ (v)) = m(z,y). Thus, the HSD is

reformulated as

Sucir) =t [ o) - o)) + elog (55 ())

m€ll(p,v)

— 3 _ 2 (¢7¢)*7T

= nt [ (= vl i)t + elog (555D (u))

_ 2 dmy (7
e s (= Bt tog (i)

. B 2 d7‘(‘¢
>t /H N v||H)d7r¢<u,v>+elog<d( e ))

= Se (Gupt; Puv)
on the other hand, for all = € TI(p, v),
d7T¢

/HX% (||U - U||%{) dmy(u,v) + elog <d(</>*,u)d(¢*u)(u’ U))
[ (= ol etog (55D ) ) a6, 00w,

- dr 8)
= [ 1900) = 6lB) dnte.) + clog (o))
. 9 dm
>t [ (lote) - 9013 datan) + elog (55w
:SH,G(H7V)

Take the infimum on 7y € II (¢ p, ¢r) over domain H X H, the inequality (8) remains hold. That is S (¢.u, p.v) >
S, (p, v). Therefore, combining (7)) and (8] achieves

Se ((Z)*,u, ¢*V) = 87‘1,6(/-/’7 V) 9)

If 7* is a minimizer of (6], then

SH,£(M; V)
d *
= [ lote) ~ o)t )+ etog (50

= u—vl|? 7 (u,v) + €lo Muv
= [ (= vlB) 0,007 () + etog (7 HE 0 )
= 86 ((b*/’(‘a (b*l/)

(10)



which implies that (¢, ¢).7* is a minimizer of (d). O

2. Proving Proposition 1

Proposition 1 (Variational representation). The KL divergence admits the following variational representation in the repro-
ducing kernel Hilbert space:

Se (Dupt, duv) = € (1 +minE,, [T] — log (E§¢ [eT])> 1
T

where the infimum is taken over w4 € I (py 1, d4v), E4(x,y) = e~ =Y/ and function T = log % + C for some constant
CeR

Proof. Step 1: Given an absolutely continuous measure 7, € P(H x 7) and a positive function &, on H x H, we define the
Kullback-Leibler (KL) divergence

7(u, v)
KL(7y | £€4) :/ 7(u,v) {ln - 1} dudv (12)
( ¢ ‘ ¢ HXH {(u,v)
We can associate ||u — v||3, to a Gibbs distribution
Ep(u,v) = e~ lu=vl3/e then lu—v|3, = —elnéy(u,v) (13)

By combining KL divergence (I2)) and Gibbs distribution (T3) algebraically, Hilbert Sinkhorn divergence (@) can be computed
as the smallest KL divergence between coupling 74 and Gibbs distribution & in the reproducing kernel Hilbert space:

Se (Qupr, psv) =€ 1+ min KL (7 > 14
Ganow) =c(14__min KL | ) (14)
Step 2. We use Donsker-Varahan representation for KL divergence
KL (mg | &) = sup Eg [T]—log (Ee, [6T]) (15)
T HxH—R

A simple proof of (T3) is as follows: for a given function 7', let us consider the Gibbs distribution G defined by dG =
%erf,ﬁ, where Z = E¢, [eT] . By construction

dG
E, [T] —log Z = E,, |log — 16
1]~ 1082 = By, o8 G | (16)
Let A be the gap,
A =KL (my | £5) = (Ex, [T] — log (Eg, [¢"])) a7
Using Eq. (I6), we can write A as the KL-divergence:
dﬂ'¢ dG dﬂ'¢
A=E,, |log— —log—| =E,, log—— =KL G 18
J1og G2 —tog G- | = B lou 2 = KL(m1) 1s)
For KL-divergence, we have A > 0 in (]ﬂ]) Thus, it can be shown that for any T,
KL(my[[€s) > Er, [T] — log (Eg, [¢"]) (19)

and the inequality also holds for taking the supremum on the right side. Finally, the identity (T8) also shows that A = 0
whenever G = 74, i.e, optimal functions 7" has the form

T:logf;gj e (20)

for some constant C' € R. Combining (T4), (I3) and (20), we achieve the conclusion. O



3. Proving Proposition 2

Proposition 2 (Lower bound). The Hilbert Sinkhorn distance has the following lower bound:

Se (Pupt, Psv) > € (1 + min E[k] — log (E¢ [ek])>

mell(p,v)
where € > 0, .. and ¢.v are Hilbert embedding in Eq. @) and k is a kernel function.

Proof. KL divergence (I3) in product space H x H satisfies

KL (g | €)= sup Eq,[T] —log (Ee, [BT])
THxH—-R

= sup /7-1 Y T(u,v)dmg(u,v) — log/ el'dés(u,v)

THXH—R HXH (21)
— s / T(u,v)d (6, 8)om) (u,v) — log / DG (6, 6),6) (u,0)
THXH—RJHXH HXH

B / T(¢(z), 6(y))dn(z, y) — log / TO@0W) g

THXH—-RJOxOQ QxQ

Let the set of inner products be M = {(-,-) : H x H — R}. Clearly, M C {T : H x H — R} for all functional maps T’
define on H x H. If functional map T € M, then we have T'(¢(z), #(y)) = (¢(x), ¢(y)) = k(z,y) where k : X x X = R
is a kernel function. Hence, we continue (ZI)) to get

> sup / T(9(z). 6(u)idn(z.y) ~ oz / TO@0W) g (2, )

TeM QxQ

=sup / k(z,y)dr(z,y) — log / K@ dg(z, y) (22)
k (9549 (9549

= sup E[k] —log (E¢ [¢*])
K:XxX—=R

By ([22) and (14), given a kernel function k£ we have the lower bound
Se (G, puv) = € (1 + min KL (7 | £¢)>
TpCTe

. . _ k
= (1eup, p B 5] .

> € (1 +minEr[k] — log (Ee [ek]))

O

Since Sy e(, V) = Se (Ps 4, p«1) as provided in Theorem As a consequence, we directly have the following result by
using Proposition [T]and 2]

Corollary 1. The reformulation (6) admits the following variational representation and lower bound:

Sue(p,v) =€ <1 + mﬂin[[*]% [T] — log (Ee, [eTD>

Swe(p,v) > ¢ (1 + min E.[k] —log (E¢ [ek])>
mell(p,v)

The related notations are defined in Prop|[l|and[2)}



4. Proving Theorem 2
Theorem 2 (Strong consistency). Given empirical measures [i,, vV, and €,1 > 0, there exists N > 0 such that

Vn > N> IP(|8H,€(MTL7V’IL) - SH,G(M; V)‘ < 677) =1 (24)

Proof. We assume that 7 is the optimal of problem (I4), and 7y , is the optimal of problem

Sue (pon,vn) =€ (1 + min KL (7 | §¢’n)> (25)

T n€llg n

Then we start by using (I3) and the triangular inequality to write,

S0 i) = Sl < (| sup [Ba, [T~ En (2] + | sup log (Be, [e7]) ~ log (B, 7))
(26)

It is reasonable to assume that functions 7" are uniformly bounded by a constant M, i.e ||T'||3z < M in reproducing kernel
Hilbert space. Since log is Lipschitz continuous with constant ¢ in the interval [e’M ,eM ] , we have

[log (B, [¢"]) —log (Ee,,, [¢"])] < e |Ee, [¢"] —Ee, ., [¢"]] @7

The families of functions 7" and T satisfy the uniform law of large numbers [3]][5][4]. Given n > 0, we can thus choose
N € N such that Vn > N and with probability one,

n _
sup  |Ex, . [T] — Eq,[T]| < g and sup  |log (Ee, [e"]) — log (Ee,,... [eT])| < 516 M (28)
THXH—R THXH—-R
Substituting Egs. and into leads to
€ €
V= N [Sue(ns vn) = Sue(pv) < G+ =en (29)
with probability one. O

S. Proving Proposition 3

Proposition 3 (approximation error). Let sample space X be a subset of R? and diameter be |X| = sup {||x — y|| | =,y € X},
we have

ISr.e(pt, ) = We(p,v)| < en

m“mm—wmmme@+mm

e’LD ) (30)
Vde
where € > 0, D > |X| and L is a Lipschitz constant.

Proof. Step 1. Notice that we can follow the idea of Proposition[I]to construct the following representation in Euclidean space

We(p,v) =€ (1 + min E.[T] - log (E¢ [eT])> 31)
mell(p,v)

where £(z,y) = e~ 4@w)/€ and function T' = log ‘fl—g. By construction, 7" satisfies [E¢ [eT] = f dr = 1.
Without loss of generality, we assume that 7 makes the minimum of E,[K] — log (E¢ [e*]) appeared in (??). Then

We(p,v) — Spe(p, v) < € (Ex[T] — log (Ee [e7])) — € (Ex[K] — log (E¢ [¢*])) by (BT) and (2?)
= ¢ ((Ex[T] —log1) — E.[K] + log (E¢ [e"]))
Er[T] — Ex[K]) + log (E¢ [¢"])) (32)
[
[

|
o

IN
[



where we used the inequality logax < x — 1.
Step 2. Fix n > 0. We first consider the case where ||T'|| < M is bounded. By the universal approximation theorem [2]],
we can choose a kernel function X < M such that

E.|T-K|< g and E¢|T— K| < ge*M (33)
Since exp is Lipschitz continuous with constant e’ on (—oc, M], we have
Ee|e” — K| < eMEe [T — K| gg (34)
From (32)-(34) and the triangular inequality, we then obtain
Wi, v) = Spe(p,v)| < € (|ER[T — K]| + |E¢ [e" — e"]]) < en (35)

which proves (30).

Step 3. In this step, we are interested in bounding the error made when approximating W (y, v) with Sy, (4, V). Assume
X is the subsets of R?, the diameter |X'| = sup {||z — 2'|| | z,2’ € X} < D and the cost function is L-Lipschitz. Then it
holds [1]]

e?LD
We(p,v) —W(u,v) < 2edlog —— (36)
(1, v) = W(p,v) &
From (33), and the triangular inequality, we then obtain
2LD
i) = W) < e (n-+ 20108 22 7
Vde

6. Proving Theorem 3

Theorem 3 (asymptotic bound). The Hilbert Sinkhorn estimator Sy  (ftn, V) approximates the Wasserstein distance W (1, )
with the following bound,
Vn > N, P(|Sw,e(pn, vn) =W, v)| < () =1 (38)

where ( = 2¢ (77 + dlog ef/%f)).

Proof. Let n > 0. We find a kernel function and N > 0 such that (24) and (30) hold. By the triangular inequality, for all
n > N and with probability one, we have:

|S’H,e(,un7 Vn) - W(/J7 V)l < |SH,6(/'L7L? Vn) - 87-[,6(,“7 V)| + |8’H,e(,ua V) - W(,u> V)l <¢

where ( = 2¢ (77+dlog %) O

7. Proving Theorem 4

Lemma 1. [l6]] We assume that arbitrary function f € H is bounded (i.e.,
{f €H:|fllu <n}, the covering number of H is

N(H,n) < (37];4> (39)

flln < M). Given the covering disk B, =

where m is the number of basis that span the function f.
Theorem 4. Given the desired accuracy parameters 1, e > 0 and the confidence parameter 1, we have,
P (ISm.e(t,v) = Spe(pins vn)| < en) = 1=, (40)
whenever the number n of samples satisfies
. 2M2(log(2/6) +2m log(24M /7))
n

(41)

where m and M are given in Lem. ][I



Proof. Assume functional 7" is M -bounded and L-Lipschtiz in reproducing kernel Hilbert space. By Hoeffding inequality, for
all function |f| < M

2
Pr <|]E#f —E, f| > Z) < 2exp (-2"M”2> 42)

To extend this inequality to a uniform inequality over all functions 7" and e, the standard technique is to choose a minimal
cover of Hilbert space by a finite set of small balls with radius 7. We need to choose a minimal cover number of the domain
Br={T"€ H:||T|l» < R} by a finite set of small balls with radius 7 such that B C {J, B, (T}). As given in Lemmal
the minimal cardinality of such covering is bounded by the covering number such that

N(H,) < (SM)m 3)
n
Successively applying the union bound in (#2)) with the set of functions {7} } to get
U n*n
Pr (sgp |Ex, [T}] = Exr,, [T}]] 2 4> <2N(H,n)exp (— 2M2> <9 (44)
which gives
Pr <81]1_p B, [Tj] — Ex, , [T}]] < Z) >1-6 (45)

We now choose small ball radius A = 7/8L. Then solving 2N (H, n) exp ( 5 MQ) < § for sample number n in (@4) to get

- 2M?(log(2/8) + mlog(24M L /7))

> (40)
We deduce from @5) and L-Lipschtiz of |T'— T};| < Ln = €/8, with probability 1 — ¢, for all 7" and T}
By [T] = En, , [T]| < [En,[T] = En, )] + |En, [T)] = Eny . [T]] + |Eny,, [T)] = En, o [T]]
n.,.n., n
<200
=3 + 1 + 3 47)
_n
2
Similarly, we also obtain that for all functions e, with probability at least 1 — &,
|log Ee, (€] —logEe, , [e"]] < g (48)
Finally, using @&7) and (48), for all T
|SH,6 (Mna Vn) - SH,G(M) V)‘
(sup [En, , [T] — En, [T]] + suplog (Ee, [7]) — log (Ee, , [¢7]) |>
T (49)
n 77)
<el(ZL 1
=€ (2 3
:6’[’}
O
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