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In this supplementary material, we provide the proofs of all theorems and propositions in the paper.

Definition 1 (Hilbert Sinkhorn divergence, HSD). Given measures µ, ν ∈ P(X ) and elements u, v ∈ H, the Hilbert Sinkhorn
divergence between embedding φ∗µ and φ∗ν is written as

Sε (φ∗µ, φ∗ν) = inf
πφ

∫
H×H

cφ(u, v)dπφ(u, v) + εΦ(πφ) (1)

where πφ ∈ Π (φ∗µ, φ∗ν) is a joint probability measure with two marginals φ∗µ and φ∗ν, and

cφ(u, v) = ‖u− v‖2H

Φ(πφ) = log

(
dπφ

d (φ∗µ) d (φ∗ν)
(u, v)

)
Definition 2 (Hilbert embedding). Let P(X ) be the set of probability measures on sample set X and P(H) be the set of
probability measures on reproducing kernel Hilbert spaceH. Given a probability measure µ ∈ P(X ), the implicit feature map
φ : X → H will induce the Hilbert embedding of µ:

φ∗ : P(X )→ P(H), µ 7→ φ∗µ =

∫
X
φ(x)dµ(x) (2)

For the map (φ, φ) : X × X → H×H, we similarly have

(φ, φ)∗ : (µ, ν) 7→ (φ∗µ, φ∗ν) (3)

Definition 3 (Hilbert Sinkhorn divergence). Given measures µ, ν ∈ P(X ) and elements u, v ∈ H, the Hilbert Sinkhorn
divergence between embedding φ∗µ and φ∗ν is written as

Sε (φ∗µ, φ∗ν) = inf
πφ

∫
H×H

cφ(u, v)dπφ(u, v) + εΦ(πφ) (4)

where πφ ∈ Π (φ∗µ, φ∗ν) is a joint probability measure with two marginals φ∗µ and φ∗ν, and

cφ(u, v) = ‖u− v‖2H

Φ(πφ) = log

(
dπφ

d (φ∗µ) d (φ∗ν)
(u, v)

)
Definition 4. Given measurable spaces (X1,Σ1) and (X2,Σ2), a measurable mapping f : X1 → X2 and a measure
µ : Σ1 → [0,+∞], the pushforward of µ is defined to be the measure f∗(µ) : Σ2 → [0,+∞] given by

(f∗(µ)) (B) = µ
(
f−1(B)

)
for B ∈ Σ2 (5)
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1. Proving Theorem 1
Theorem 1. Given two measures µ, ν ∈ P(X ), we write

SH,ε(µ, ν) = inf
π

∫
X×X

cH(x, y)dπ(x, y) + εH(π) (6)

where π ∈ Π(µ, ν) is the joint probability measure on X × X with marginals µ and ν, and

cH(x, y) = ‖φ(x)− φ(y)‖2H = k(x, x) + k(y, y)− 2k(x, y)

H(π) = log

(
dπ

dµ dν
(x, y)

)
Then we have the following conclusions:

• SH,ε(µ, ν) = Sε (φ∗µ, φ∗ν)

• If π∗ is a minimizer of (6), its Hilbert embedding (φ, φ)∗π
∗ is a minimizer of (4).

Proof. Applying the pushforward map in (5), we have ((φ, φ)∗π) (u, v) = π
(
φ−1(u), φ−1(v)

)
= π(x, y). Thus, the HSD is

reformulated as

SH,ε(µ, ν) = inf
π∈Π(µ,ν)

∫
X×X

‖φ(x)− φ(y)‖2Hdπ(x, y) + ε log

(
dπ

dµdν
(x, y)

)
= inf
π∈Π(µ,ν)

∫
H×H

(
‖u− v‖2H

)
d(φ, φ)∗π(u, v) + ε log

(
d(φ, φ)∗π

d (φ∗µ) d (φ∗ν)
(u, v)

)
= inf
π∈Π(µ,ν)

∫
H×H

(
‖u− v‖2H

)
dπφ(u, v) + ε log

(
dπφ

d (φ∗µ) d (φ∗ν)
(u, v)

)
≥ inf
πφ∈Π(φ∗µ,φ∗ν)

∫
H×H

(
‖u− v‖2H

)
dπφ(u, v) + ε log

(
dπφ

d (φ∗µ) d (φ∗ν)
(u, v)

)
= Sε (φ∗µ, φ∗ν)

(7)

on the other hand, for all π ∈ Π(µ, ν),∫
H×H

(
‖u− v‖2H

)
dπφ(u, v) + ε log

(
dπφ

d (φ∗µ) d (φ∗µ)
(u, v)

)
=

∫
H×H

(
‖u− v‖2H + ε log

(
d(φ, φ)∗π

d (φ∗µ) d (φ∗ν)
(u, v)

))
d(φ, φ)∗π(u, v)

=

∫
X×X

(
‖φ(x)− φ(y)‖2H

)
dπ(x, y) + ε log

(
dπ

dµdν
(x, y)

)
≥ inf
π∈Π(µ,ν)

∫
X×X

(
‖φ(x)− φ(y)‖2H

)
dπ(x, y) + ε log

(
dπ

dµdν
(x, y)

)
=SH,ε(µ, ν)

(8)

Take the infimum on πφ ∈ Π (φ∗µ, φ∗ν) over domain H × H, the inequality (8) remains hold. That is Sε (φ∗µ, φ∗ν) ≥
SH,ε(µ, ν). Therefore, combining (7) and (8) achieves

Sε (φ∗µ, φ∗ν) = SH,ε(µ, ν) (9)

If π∗ is a minimizer of (6), then

SH,ε(µ, ν)

=

∫
X×X

‖φ(x)− φ(y)‖2Hdπ∗(x, y) + ε log

(
dπ∗

dµdν
(x, y)

)
=

∫
H×H

(
‖u− v‖2H

)
d(φ, φ)∗π

∗(u, v) + ε log

(
d(φ, φ)∗π

∗

d (φ∗µ) d (φ∗ν)
(u, v)

)
= Sε (φ∗µ, φ∗ν)

(10)



which implies that (φ, φ)∗π
∗ is a minimizer of (4).

2. Proving Proposition 1
Proposition 1 (Variational representation). The KL divergence admits the following variational representation in the repro-
ducing kernel Hilbert space:

Sε (φ∗µ, φ∗ν) = ε

(
1 + min

πφ
Eπφ [T ]− log

(
Eξφ

[
eT
]))

(11)

where the infimum is taken over πφ ∈ Π (φ∗µ, φ∗ν), ξφ(x, y) = e−d(x,y)/ε and function T = log
dπφ
dξφ

+ C for some constant
C ∈ R.

Proof. Step 1: Given an absolutely continuous measure πφ ∈ P(H×H) and a positive function ξφ onH×H, we define the
Kullback-Leibler (KL) divergence

KL(πφ | ξφ) =

∫
H×H

π(u, v)

[
ln
π(u, v)

ξ(u, v)
− 1

]
dudv (12)

We can associate ‖u− v‖2H to a Gibbs distribution

ξφ(u, v) = e−‖u−v‖
2
H/ε, then ‖u− v‖2H = −ε ln ξφ(u, v) (13)

By combining KL divergence (12) and Gibbs distribution (13) algebraically, Hilbert Sinkhorn divergence (4) can be computed
as the smallest KL divergence between coupling πφ and Gibbs distribution ξφ in the reproducing kernel Hilbert space:

Sε (φ∗µ, φ∗ν) = ε

(
1 + min

πφ∈Π(φ∗µ,φ∗ν)
: KL (πφ | ξφ)

)
(14)

Step 2. We use Donsker-Varahan representation for KL divergence

KL (πφ | ξφ) = sup
T :H×H→R

Eπφ [T ]− log
(
Eξφ

[
eT
])

(15)

A simple proof of (15) is as follows: for a given function T , let us consider the Gibbs distribution G defined by dG =
1
Z e

T dξφ, where Z = Eξφ
[
eT
]
. By construction

Eπφ [T ]− logZ = Eπφ
[
log

dG
dξφ

]
(16)

Let ∆ be the gap,
∆ := KL (πφ | ξφ)−

(
Eπφ [T ]− log

(
Eξφ

[
eT
]))

(17)

Using Eq. (16), we can write ∆ as the KL-divergence:

∆ = Eπφ
[
log

dπφ
dξφ
− log

dG
dξφ

]
= Eπφ log

dπφ
dG

= KL(πφ‖G) (18)

For KL-divergence, we have ∆ ≥ 0 in (17). Thus, it can be shown that for any T ,

KL(πφ‖ξφ) ≥ Eπφ [T ]− log
(
Eξφ

[
eT
])

(19)

and the inequality also holds for taking the supremum on the right side. Finally, the identity (18) also shows that ∆ = 0
whenever G = πφ,, i.e, optimal functions T has the form

T = log
dπφ
dξφ

+ C (20)

for some constant C ∈ R. Combining (14), (15) and (20), we achieve the conclusion.



3. Proving Proposition 2
Proposition 2 (Lower bound). The Hilbert Sinkhorn distance has the following lower bound:

Sε (φ∗µ, φ∗ν) ≥ ε
(

1 + min
π∈Π(µ,ν)

Eπ[k]− log
(
Eξ
[
ek
]))

where ε > 0, φ∗µ and φ∗ν are Hilbert embedding in Eq. (2) and k is a kernel function.

Proof. KL divergence (15) in product spaceH×H satisfies

KL (πφ | ξφ) = sup
T :H×H→R

Eπφ [T ]− log
(
Eξφ

[
eT
])

= sup
T :H×H→R

∫
H×H

T (u, v)dπφ(u, v)− log

∫
H×H

eT dξφ(u, v)

= sup
T :H×H→R

∫
H×H

T (u, v)d ((φ, φ)∗π) (u, v)− log

∫
H×H

eT (u,v)d ((φ, φ)∗ξ) (u, v)

(5)
= sup

T :H×H→R

∫
Ω×Ω

T (φ(x), φ(y))dπ(x, y)− log

∫
Ω×Ω

eT (φ(x),φ(y))dξ

(21)

Let the set of inner products beM = {〈·, ·〉 : H×H → R}. Clearly,M ⊆ {T : H×H → R} for all functional maps T
define onH×H. If functional map T ∈M, then we have T (φ(x), φ(y)) = 〈φ(x), φ(y)〉 = k(x, y) where k : X × X → R
is a kernel function. Hence, we continue (21) to get

≥ sup
T∈M

∫
Ω×Ω

T (φ(x), φ(y))dπ(x, y)− log

∫
Ω×Ω

eT (φ(x),φ(y))dξ(x, y)

= sup
k

∫
Ω×Ω

k(x, y)dπ(x, y)− log

∫
Ω×Ω

eK(x,y)dξ(x, y)

= sup
K:X×X→R

Eπ[k]− log
(
Eξ
[
ek
]) (22)

By (22) and (14), given a kernel function k we have the lower bound

Sε (φ∗µ, φ∗ν) = ε

(
1 + min

πφ∈πφ
KL (πφ | ξφ)

)
≥ ε

(
1 + min

π∈Π
sup

k:X×X→R
Eπ[k]− log

(
Eξ
[
ek
]))

≥ ε
(

1 + min
π∈Π

Eπ[k]− log
(
Eξ
[
ek
]))

(23)

Since SH,ε(µ, ν) = Sε (φ∗µ, φ∗ν) as provided in Theorem 1. As a consequence, we directly have the following result by
using Proposition 1 and 2.

Corollary 1. The reformulation (6) admits the following variational representation and lower bound:

SH,ε(µ, ν) = ε

(
1 + min

πφ
Eπφ [T ]− log

(
Eξφ

[
eT
]))

SH,ε(µ, ν) ≥ ε
(

1 + min
π∈Π(µ,ν)

Eπ[k]− log
(
Eξ
[
ek
]))

The related notations are defined in Prop 1 and 2.



4. Proving Theorem 2
Theorem 2 (Strong consistency). Given empirical measures µn, νn and ε, η > 0, there exists N > 0 such that

∀n ≥ N, P (|SH,ε(µn, νn)− SH,ε(µ, ν)| ≤ εη) = 1 (24)

Proof. We assume that πφ is the optimal of problem (14), and πφ,n is the optimal of problem

SH,ε (µn, νn) = ε

(
1 + min

πφ,n∈Πφ,n
: KL (πφ,n | ξφ,n)

)
(25)

Then we start by using (15) and the triangular inequality to write,

|SH,ε (µn, νn)− SH,ε(µ, ν)| ≤ ε
(

sup
T :H×H→R

∣∣Eπφ,n [T ]− Eπφ [T ]
∣∣+ sup

T :H×H→R

∣∣log
(
Eξφ

[
eT
])
− log

(
Eξφ,n

[
eT
])∣∣)

(26)
It is reasonable to assume that functions T are uniformly bounded by a constant M, i.e ‖T‖H ≤ M in reproducing kernel
Hilbert space. Since log is Lipschitz continuous with constant eM in the interval

[
e−M , eM

]
, we have∣∣log

(
Eξφ

[
eT
])
− log

(
Eξφ,n

[
eT
])∣∣ ≤ eM ∣∣Eξφ [eT ]− Eξφ,n

[
eT
]∣∣ (27)

The families of functions T and eT satisfy the uniform law of large numbers [3][5][4]. Given η > 0, we can thus choose
N ∈ N such that ∀n ≥ N and with probability one,

sup
T :H×H→R

∣∣Eπφ,n [T ]− Eπφ [T ]
∣∣ ≤ η

2
and sup

T :H×H→R

∣∣log
(
Eξφ

[
eT
])
− log

(
Eξφ,n

[
eT
])∣∣ ≤ η

2
e−M (28)

Substituting Eqs. (28) and (28) into (26) leads to

∀n ≥ N, |SH,ε(µn, νn)− SH,ε(µ, ν)| ≤ εη

2
+
εη

2
= εη (29)

with probability one.

5. Proving Proposition 3
Proposition 3 (approximation error). Let sample space X be a subset of Rd and diameter be |X | = sup {‖x− y‖ | x, y ∈ X},
we have

|SH,ε(µ, ν)−Wε(µ, ν)| ≤ εη

|SH,ε(µ, ν)−W(µ, ν)| ≤ ε
(
η + 2d log

e2LD√
dε

) (30)

where ε > 0, D ≥ |X | and L is a Lipschitz constant.

Proof. Step 1. Notice that we can follow the idea of Proposition 1 to construct the following representation in Euclidean space

Wε(µ, ν) = ε

(
1 + min

π∈Π(µ,ν)
Eπ[T ]− log

(
Eξ
[
eT
]))

(31)

where ξ(x, y) = e−d(x,y)/ε and function T = log dπ
dξ . By construction, T satisfies Eξ

[
eT
]

=
∫
dπ = 1.

Without loss of generality, we assume that π makes the minimum of Eπ[K]− log
(
Eξ
[
eK
])

appeared in (??). Then

Wε(µ, ν)− SH,ε(µ, ν) ≤ ε
(
Eπ[T ]− log

(
Eξ
[
eT
]))
− ε
(
Eπ[K]− log

(
Eξ
[
eK
]))

by (31) and (??)

= ε
(
(Eπ[T ]− log 1)− Eπ[K] + log

(
Eξ
[
eK
]))

= ε
(
(Eπ[T ]− Eπ[K]) + log

(
Eξ
[
eK
]))

≤ ε
(
(Eπ[T ]− Eπ[K]) +

(
Eξ
[
eK
]
− 1
))

= ε
(
(Eπ[T −K]) +

(
Eξ
[
eK − eT

]))
(32)



where we used the inequality log x ≤ x− 1.
Step 2. Fix η > 0. We first consider the case where ‖T‖ ≤M is bounded. By the universal approximation theorem [2],

we can choose a kernel function K ≤M such that

Eπ |T −K| ≤
η

2
and Eξ |T −K| ≤

η

2
e−M (33)

Since exp is Lipschitz continuous with constant eM on (−∞,M ], we have

Eξ
∣∣eT − eK∣∣ ≤ eMEξ |T −K| ≤

η

2
(34)

From (32)-(34) and the triangular inequality, we then obtain

|Wε(µ, ν)− SH,ε(µ, ν)| ≤ ε
(
|Eπ[T −K]|+

∣∣Eξ [eT − eK]∣∣) ≤ εη (35)

which proves (30).
Step 3. In this step, we are interested in bounding the error made when approximating W (µ, ν) with SH,ε(µ, ν). Assume

X is the subsets of Rd, the diameter |X | = sup {‖x− x′‖ | x, x′ ∈ X} 6 D and the cost function is L-Lipschitz. Then it
holds [1]

Wε(µ, ν)−W(µ, ν) ≤ 2εd log
e2LD√
dε

(36)

From (35), (36) and the triangular inequality, we then obtain

|SH,ε(µ, ν)−W(µ, ν)| ≤ ε
(
η + 2d log

e2LD√
dε

)
(37)

6. Proving Theorem 3
Theorem 3 (asymptotic bound). The Hilbert Sinkhorn estimator SH,ε(µn, νn) approximates the Wasserstein distanceW (µ, ν)
with the following bound,

∀n ≥ N, P (|SH,ε(µn, νn)−W(µ, ν)| ≤ ζ) = 1 (38)

where ζ = 2ε
(
η + d log e2LD√

dε

)
.

Proof. Let η > 0. We find a kernel function and N > 0 such that (24) and (30) hold. By the triangular inequality, for all
n ≥ N and with probability one, we have:

|SH,ε(µn, νn)−W (µ, ν)| ≤ |SH,ε(µn, νn)− SH,ε(µ, ν)|+ |SH,ε(µ, ν)−W (µ, ν)| ≤ ζ

where ζ = 2ε
(
η + d log e2LD√

dε

)
7. Proving Theorem 4
Lemma 1. [6] We assume that arbitrary function f ∈ H is bounded (i.e., ‖f‖H ≤ M ). Given the covering disk Bη =
{f ∈ H : ‖f‖H ≤ η}, the covering number ofH is

N (H, η) ≤
(

3M

η

)m
(39)

where m is the number of basis that span the function f .

Theorem 4. Given the desired accuracy parameters η, ε > 0 and the confidence parameter η, we have,

P (|SH,ε(µ, ν)− SH,ε(µn, νn)| ≤ εη) ≥ 1− δ, (40)

whenever the number n of samples satisfies

n ≥ 2M2(log(2/δ) +m log(24M/η))

η2
(41)

where m and M are given in Lem. 1.



Proof. Assume functional T is M -bounded and L-Lipschtiz in reproducing kernel Hilbert space. By Hoeffding inequality, for
all function |f | ≤M

Pr
(
|Eµf − Eµnf | >

η

4

)
≤ 2 exp

(
− η2n

2M2

)
(42)

To extend this inequality to a uniform inequality over all functions T and eT , the standard technique is to choose a minimal
cover of Hilbert space by a finite set of small balls with radius η. We need to choose a minimal cover number of the domain
BR = {T ∈ H : ‖T‖H ≤ R} by a finite set of small balls with radius η such that BR ⊂

⋃
j Bη (Tj). As given in Lemma 1,

the minimal cardinality of such covering is bounded by the covering number such that

N (H, η) ≤
(

3M

η

)m
(43)

Successively applying the union bound in (42) with the set of functions {Tj} to get

Pr

(
sup
j

∣∣Eπφ [Tj ]− Eπφ,n [Tj ]
∣∣ ≥ η

4

)
≤ 2N (H, η) exp

(
− η2n

2M2

)
< δ (44)

which gives

Pr

(
sup
j

∣∣Eπφ [Tj ]− Eπφ,n [Tj ]
∣∣ ≤ η

4

)
> 1− δ (45)

We now choose small ball radius λ = η/8L. Then solving 2N (H, η) exp
(
− ε2n

2M2

)
≤ δ for sample number n in (44) to get

n ≥ 2M2(log(2/δ) +m log(24ML/η))

η2
(46)

We deduce from (45) and L-Lipschtiz of |T − Tj | ≤ Lη = ε/8, with probability 1− δ, for all T and Tj∣∣Eπφ [T ]− Eπφ,n [T ]
∣∣ ≤ ∣∣Eπφ [T ]− Eπφ [Ij ]

∣∣+
∣∣Eπφ [Tj ]− Eπφ,n [Tj ]

∣∣+
∣∣Eπφ,n [Tj ]− Eπn,H [T ]

∣∣
≤ η

8
+
η

4
+
η

8

=
η

2

(47)

Similarly, we also obtain that for all functions eT , with probability at least 1− δ,∣∣logEξφ
[
eT
]
− logEξφ,n

[
eT
]∣∣ ≤ η

2
(48)

Finally, using (26) (47) and (48), for all T

|SH,ε (µn, νn)− SH,ε(µ, ν)|

≤ε
(

sup
T

∣∣Eπφ,n [T ]− Eπφ [T ]
∣∣+ sup

T

∣∣log
(
Eξφ

[
eT
])
− log

(
Eξφ,n

[
eT
])∣∣)

≤ε
(η

2
+
η

2

)
=εη

(49)
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