
Supplementary Material

1. Proof

In this section, we provide a detailed proof of Thm. 4.1
and Thm. 4.2 in sequence.

1.1. Proof of classification bound

Before we reach the proof to the main theorem, we first
prove the following lemmas for each theorem. With the
notations introduced in Sec. 4, we introduce the following
lemmas that will be used in proving the main theorem:

Lemma 1.1. [[1]] Let h ∈ H := {h : Z → {0, 1}}, where
V Cdim(H) = d, and for any distribution DS(Z), DT (Z)
over Z , then

|εS(h)− εT (h)| ≤ dH∆H(DS(Z),DT (Z))

Lemma 1.2. Let h ∈ H := {h : Z → {0, 1}}, where
V Cdim(H) = d, and for any distribution DS(Z), DT (Z)
over Z . Let the noises on the source and target are defined
as nS := ES [|Y − fS(Z)|] and nT := ET [|Y − fT (Z)|],
where f : Z → [0, 1] is the conditional mean function, i.e.,
f(Z) = E[Y |Z] then we have:∣∣εS(h)− εT (h)∣∣ ≤ |nS + nT |+ dH∆H(DS(Z),DT (Z))

+ min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}

Proof. To begin with, we first show that for the source do-
main, εS(h) cannot be too large if h is close to the optimal
classifier fS on source domain for ∀h ∈ H:

|εS(h)− ES [|h(Z)− fS(Z)|]|
=
∣∣ES [|h(Z)− Y |]− ES [|h(Z)− fS(Z)|]

∣∣
≤ ES

[∣∣|h(Z)− Y | − |fS(Z)− h(Z)|∣∣]
≤ ES [|Y − fS(Z)|]
= nS

Similarly, we also have an analogous inequality hold on the
target domain:

|εT (h)− ET [|h(Z)− fT (Z)|]| ≤ nT .

Combining both inequalities above, yields:

εS(h) ∈ [ES [|h(Z)− fS(Z)|]− nS ,
ES [|h(Z)− fS(Z)|] + nS ],

−εT (h) ∈ [−ET [|h(Z)− fT (Z)|]− nT ,
− ET [|h(Z)− fT (Z)|] + nT ]

Hence,∣∣εS(h)− εT (h)∣∣ ≤ |nS + nT |+∣∣ES [|h(Z)− fS(Z)|]− ET [|h(Z)− fT (Z)|]
∣∣

Now to simplify the notation, for e ∈ {S, T}, define
εe(h, h

′) = Ee[|h(Z)− h′(Z)|], so that∣∣ES [|h(Z)− fS(Z)|]− ET [|h(Z)− fT (Z)|]
∣∣

=
∣∣εS(h, fS)− εT (fT , h)∣∣.

To bound
∣∣εS(h, fS)− εT (fT , h)∣∣, on one hand, we have:∣∣εS(h, fS)− εT (fT , h)∣∣ =∣∣εS(h, fS)− εS(h, fT ) + εS(h, fT )− εT (fT , h)

∣∣
≤
∣∣εS(h, fS)− εS(h, fT )∣∣+ ∣∣εS(h, fT )− εT (fT , h)∣∣

≤ ES [|fS(Z)− fT (Z)|] +
∣∣εS(h, fT )− εT (fT , h)∣∣

From 1.1, we have:

≤ ES [|fS(Z)− fT (Z)|] + dH∆H(DS(Z),DT (Z)).

Similarly, by the same trick of subtracting and adding back
εT (h, fS) above, the following inequality also holds:∣∣εS(h, fS)− εT (fT , h)∣∣ ≤

ET [|fS(Z)− fT (Z)|] + dH∆H(DS(Z),DT (Z)).

Combine all the inequalities above, we know that:∣∣εS(h)− εT (h)∣∣ ≤ |nS + nT |+ dH∆H(DS(Z),DT (Z))

+ min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}
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Lemma 1.3. [[2], Corollary 3.19] Let h ∈ H := {h : Z →
{0, 1}}, where V Cdim(H) = d. Then ∀h ∈ H,∀δ > 0,
w.p.b. at least 1− δ over the choice of a sample size m and
natural exponential e, the following inequality holds:

ε(h) ≤ ε̂(h) +
√

2d

m
log

em

d
+

√
1

2m
log

1

δ
.

Lemma 1.4. Let h ∈ H := {h : Z → {0, 1}}, where
V Cdim(H) = d. Then ∀h ∈ H,∀δ > 0, then w.p.b. at
least 1 − δ over the choice of a sample size m and natural
exponential e, the following inequality holds:

εT (h) ≤ ε̂S(h) + dH∆H(DS(Z),DT (Z))

+ min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}

+ |nS + nT |+
√

2d
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Proof. Invoking the upper bound in 1.2, we have w.p.b at
least 1− δ:

εT (h) ≤ εS(h) + dH∆H(DS(Z),DT (Z))

+ min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}
+ |nS + nT |

≤ ε̂S(h) + dH∆H(DS(Z),DT (Z))

+ min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}

+ |nS + nT |+
√

2d

n
log

en

d
+

√
1
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log
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δ
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Theorem 1.1. Let h ∈ H := {h : Z → {0, 1}}, where
V Cdim(H) = d. For 0 < δ < 1, then w.p.b. at least 1− δ
over the draw of samples S and T , for all h ∈ H, we have:

εT (h) ≤
m

n+m
ε̂T (h) +

n

n+m
ε̂S(h)

+
n

n+m
(dH∆H(DS ,DT )

+ min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]})

+
n

n+m
|nS + nT |
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Proof. Having 1.3, 1.4, we can use a union bound to com-
bine them with coefficients m/(n + m) and n/(n + m)

respectively, we have:

εT (h) ≤
m

n+m

(
ε̂T (h) +

√
2d

m
log

em

d
+

√
1

2m
log

1

δ

)
+

n

n+m
(ε̂S(h) + dH∆H(DS ,DT )

+ min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]})

+
n

n+m

(
|nS + nT |+

√
2d

n
log

en

d
+

√
1

2n
log

1

δ

)
.

From Cauchy-Schwartz inequality, we obtain

εT (h) ≤
m

n+m

(
ε̂T (h) +

√
4d
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log
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d
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1

m
log

1

δ

)
+

n

n+m
(ε̂S(h) + dH∆H(DS ,DT )

+ min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]})

+
n
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As m � n and applying Cauchy-Schwartz inequality one
more time, we have

≤ m

n+m
ε̂T (h) +

n

n+m
ε̂S(h)

+
n

n+m
(dH∆H(DS ,DT )+

min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]})

+
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≤ m

n+m
ε̂T (h) +

n
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ε̂S(h)

+
n
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(dH∆H(DS ,DT )

+ min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]})
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1.2. Proof of regression bound

For regression generalization bound, we follow the proof
strategy in previous section, but with slight change of defi-
nitions. We let H = {h : Z → [0, 1]} be a set of bounded
real-valued functions from the input space Z to [0, 1]. We
use Pdim(H) to denote the pseudo-dimension ofH, and let
Pdim(H) = d. We first prove the following lemmas that
will be used in proving the main theorem:



Lemma 1.5. [3] For h, h′ ∈ H := {h : Z → [0, 1]}, where
Pdim(H) = d, and for any distribution DS(Z), DT (Z)
over Z ,

|εS(h, h′)− εT (h, h′)| ≤ dH̃(DS(Z),DT (Z))

where H̃ := {I|h(x)−h′(x)|>t : h, h
′ ∈ H, 0 ≤ t ≤ 1}.

Lemma 1.6. For h, h′ ∈ H := {h : Z → [0, 1]}, where
Pdim(H) = d, and for any distribution DS(Z), DT (Z)
over Z , we define H̃ := {I|h(x)−h′(x)|>t := h, h′ ∈ H, 0 ≤
t ≤ 1}. Then ∀h ∈ H, the following inequality holds:∣∣εS(h)− εT (h)∣∣ ≤ |nS + nT |+ dH̃(DT (Z),DS(Z))

+ min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}

Lemma 1.7. Thm.11.8 [2] Let H be the set of real-valued
function from Z to [0, 1]. Assume that Pdim(H) = d.
Then ∀h ∈ H,∀δ > 0, with probability at least 1 − δ over
the choice of a sample size m and natural exponential e, the
following inequality holds:

ε(h) ≤ ε̂(h) +
√
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m
log
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Lemma 1.8. Let H be a set of real-valued functions from
Z to [0, 1] with Pdim(H) = d, and H̃ := {I|h(x)−h′(x)|>t :
h, h′ ∈ H, 0 ≤ t ≤ 1}. For 0 < δ < 1, then w.p.b. at least
1− δ over the draw of samples S and T , for all h ∈ H, we
have:

εT (h) ≤ ε̂S(h) + dH̃(DS ,DT )

+ min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}

+ |nS + nT |+
√
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Proof. Invoking the upper bound in 1.6 and 1.7, we have
w.p.b at least 1− δ:

εT (h) ≤ ε̂S(h) + dH̃(DS ,DT )

+ min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}
+ |nS + nT |

≤ ε̂S(h) + dH̃(DS ,DT )

+ min{ES [|fS(Z)− fT (Z)|],ET [|fS(Z)− fT (Z)|]}

+ |nS + nT |+
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Theorem 1.2. LetH be a set of real-valued functions from
Z to [0, 1] with Pdim(H) = d, and H̃ := {I|h(x)−h′(x)|>t :
h, h′ ∈ H, 0 ≤ t ≤ 1}. For 0 < δ < 1, then w.p.b. at least

1− δ over the draw of samples S and T , for all h ∈ H, we
have:

εT (h) ≤
m
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Proof. Having 1.5, 1.6, 1.7, 1.8, we can use a union
bound to combine them with coefficients m/(n + m) and
n/(n + m) respectively, and replace the dH∆H(DS ,DT )
with dH̃(DS ,DT ) in the proof of Thm. 1.1. Obviously, we
have Thm. 1.2. �

1.3. Discussions

From binary to multi-class We leave the extension from
binary to multi-class in the future work. Definition 4.1 is
essentially a relaxed version of the classic total variation
distance, so it can also be used in multi-class classification
problems where we have more than 2 conditional distribu-
tions. However, the results in Theorem 4.1 indeed can only
be applied in the binary classification setting, due to the use
of VC-dimension, which only makes sense for binary clas-
sification problems. That being said, extension to the multi-
class classification problem shouldn’t be hard, although its
presentation would be much more involved. At a high level,
the proof essentially boils down to replace the VC dimen-
sion with the the Natarajan dimension [4].

Generalizing to `1 loss The bound can indeed be straight-
forwardly generalized to `p loss. We use the `1 loss in the
presentation in order to be consistent with our experiments
of vehicle counting, where we use the mean absolute er-
ror. A similar variational formulation of the conditional mu-
tual information for continuous variables with `p loss also
holds [5]. We use the cross-entropy loss in practice for clas-
sification problems because the 0-1 loss is computationally
intractable to optimize, and the cross-entropy loss serves as
a convex proxy for the binary loss.

Bridging theory and practice The bounds serve as jus-
tification to design our algorithms but they contain terms
that are not directly available in practice, e.g., the optimal
hypothesis of the two domains. On the other hand, using
information-theoretic tools, we can close the gap between
theory and practice, since the minimization of the condi-
tional mutual information implies the minimization of the
distance between the two optimal hypothesis.



2. More Experimental Results
2.1. Comparison with State-of-the-art Methods

Here we should address that we are not strictly in the
same setting with MME [6] and its related works [7]. In all
datasets, MME addresses in the few-shot setting and uses
1 or 3-shot as target labeled data. We argue that 1 or 3-
shot is only suitable for few-shot learning and prototypical
representations learning. The data selection will bias the
model to a large extent. While we use more data to alleviate
the selection bias and to mimic the usage in real domain
adaptation application, such as 1%, 5% and more proportion
of target labeled data. In DomainNet, MME use 126 out
of the total 345 classes data, while we keep use the 345
classes for better evaluate our model performance in a more
challenging setting. Although not strictly under the same
setting, we also compare ours with the current state-of-the-
art Semi-DA methods in our setting. MME [6] and other
related works (such as APE [7]) assumes that there exists
class-wise prototypical representations between source and
target domain, and exploit Cosine Classifier [8] to help learn
the prototypical representations. However, our method can
also seamlessly combine with Cosine Classifier for better
performance, even comparing with the methods above as in
Table 2.

Table 1: The weights trade off between invariant represen-
tation part and invariant risk part under OfficeHome: Art to
Real scenarios.(mean ± std)

λrisk
λrep 1 0.1 0.01

1 70.23±0.18 70.96±0.17 70.55±0.18
0.1 71.20±0.14 72.66±0.16 72.31±0.19

0.01 72.65±0.15 73.12±0.19 72.97±0.20

2.2. Hyper-parameters

There are two fundamental part in our proposed LIRR
loss. One is the invariant representation item, the other is
the invariant risk item. We use λrep and λrisk represent the
weights of invariant representation item and invariant risk
item respectively. In order to explore the best trade off be-
tween this two items, we conduct extra experiments on Art
to Real scenario in OfficeHome dataset. All other hyper-
parameters settings are set as same as Sec.6.3. The results
can be found in Table. 1. From which, we can see that
the optimal performance is achieved when λrisk = 0.1 and
λrep = 0.01.

2.3. Implementation Details

For image classification task: we use ResNet34 as
backbone networks. We adopt SGD with learning rate of
1e-3, momentum of 0.9 and weight decay factor of 5e-4.

We decay the learning rate with a multiplier 0.1 when train-
ing process reach three quarters of the total iterations. The
batch size is set as 128 for VisDA2017 and Domainnet, 64
for officehome. For adversarial training, we use gradient
reversal layer (GRL) to flip gradient in the backpropagation
between feature encoder g(·) and domain discriminator C(·)
to obtain domain-invariant representation w.r.t. source la-
beled data and target unlabeled data. For min-max training
objective for Li and Ld in Eq.7, we implement it with the
difference on two losses,L(y, h(z)) andL(y, h(z, d)). h(z)
is realized by a common predictor which only takes feature
z as input. h(z, d) indicates an additional predictor which
takes the combination of feature z and domain index d, e.g.
we concatenate original feature z with an additional full 0
(or 1) channel to represent source(or target) domain. It’s
worth noting that according to [6], the utilization of entropy
minimization hurts the performance. Thus, we implement
the CDAN method without entropy minimization. Our re-
sults are all obtained without heavy engineering tricks. All
code is implemented in Pytorch and will be made available
upon acceptance.

For traffic counting regression task: we use VGG16 as
encoder and FCN8s [9] as decoder. The model will output
a density map as the regression result for input images. The
optimizing goal is a joint loss including both the euclidean
loss between the groundtruth density map and the predicted
one, and the mean absolute counting error loss between the
total predicted count and groundtruth count. We use mean
absolute error (MAE) metric for evaluation, which measure
the absolute difference between the output count and the
ground-truth count. We adopt Adam optimizer with learn-
ing rate set to 1e-6. The batch size is set as 24.

2.4. Discussions

LIRR with cosine classifier It should be noted that LIRR
alone achieves favorable performance over other baselines.
With the cosine classifier, a useful technique adopted by
many previous works [6], LIRR’s performance can be fur-
ther improved. We perform this additional experiment
mainly to show that our framework is also compatible with
existing techniques, e.g., the cosine classifier.

Grad-CAM results In Figure.4, LIRR captures a more
complete representation of the husky’s face than both
DANN and Source+Target, in which they capture only parts
of the husky’s face. Similarly for puppy (second row), LIRR
captures more on the puppy’s outline and body shape.
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