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1. Parameters Discussion
In this section, we investigate the influence of different

weights of ordinal constraint loss α and VIB loss β on the
MORPH II dataset. In previous experiments, we fixed the
α to 1e-4, β to 1e-5. To see the effect of these trade-off
hyper-parameters, we freeze one parameter as default and
tweak the other one. Table 1 shows the comparison result-
s with different α values on the MORPH database. Our
method achieves the best performance when α is set to 1e-
4. Therefore we set α to 1e-4 in other experiments. Table 2
illustrates the results with varied β values on the MORPH
database. The best result is achieved when β is set to 1e-5,
which is adopted in the following experiments. We also ob-
serve significant performance degradation with large α or β
weights (larger than 1e-3), which demonstrates the necessi-
ty of hyper-parameter tuning.

Table 1. Results of ordinal loss with different α values on the
MORPH II dataset.

α 1e-2 1e-3 1e-4 1e-5 1e-6 1e-7

MAE 3.89 2.42 2.35 2.39 2.38 2.40

Table 2. Results of VIB loss with different β values on the
MORPH II dataset.

β 1e-2 1e-3 1e-4 1e-5 1e-6 1e-7

MAE 8.36 2.39 2.39 2.35 2.37 2.37

2. Distributions of Uncertainty
The harmonic mean of the predicted variance σ is em-

ployed as the approximated measurement of the estimated
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uncertainty. To further demonstrate the utility of this met-
ric, We visualize the distributions of the learned uncertainty
on the corrupted MORPH II test set using Gaussian blur
with three different radii. The results are shown in Figure 1.
With different Gaussian blur radii (each equal to 0, 5, 10),
the learned uncertainty increases while the image quality
degrades. As one can see, the distributions ”move” to the
right by a large margin as the quality degradation increases
in the following order: radius=0 < radius=5 < radius=10.
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Figure 1. Uncertainty distributions on the corrupted MORPH II
test set.

3. Triangle Inequality Issue
The potential problem of symmetric KL divergence is

that it is not a strict distance metric due to the triangle
inequality issue. However, it is widely used to measure
the difference of probability distributions in practice and
achieves great success in many areas such as VAE. We also
provide the 2-Wasserstein distance in our paper and find that
both of them work well. We present more results on other



20 10 0 10 20

20

10

0

10

20

Deterministic Embeddings

20 10 0 10 20

20

10

0

10

20

Probabilistic Embeddings

20 10 0 10 20

20

10

0

10

20

Probabilistic Ordinal Embeddings

0

20

40

60

80

100
age label

Figure 2. Visualization of feature embeddings with the classification based method on the MORPH II test set.

tasks in Table 3 and observe the same conclusion. Users can
choose the suitable metric according to their needs.

Table 3. More results with different metrics. 2-W for 2-
Wasserstein distance and S-KL for symmetric KL divergence.

Metric Adience Historical
Acc (%) MAE ACC (%) MAE

2-W 61.7±4.7 0.45±0.07 51.88±1.98 0.72±0.03
S-KL 60.5±4.4 0.47±0.06 54.68±3.21 0.67±0.04

4. Ordinal Information
To validate that the proposed method can preserve the

ordinal information in the embedding space, we conduct-
ed quantitative and qualitative evaluations. For quantitative
results, we count the proportion of triplets that violate the
ordinal constraint in the embedding space on the test set.
The results on the MORPH II test set are presented in Ta-
ble 4. We see that our POE better preserves the ordinal
information in the embeddings. For qualitative results, we
illustrate the learned features of deterministic embeddings,
probabilistic embeddings, and probabilistic ordinal embed-
dings on the MORPH II test set. Figure 2 shows the results
with the classification based method and Figure 3 shows the
results with the ranking based method. When using t-SNE,
we set the perplexity=100 and fix the initial state. We see
that compared with the deterministic embeddings and prob-
abilistic embeddings, POEs learned more compact and or-
dered feature embeddings, which validates that the ordinal
constraint in the target space is well preserved in the learned
embedding space.

5. Standard Deviation
Following most previous works, we did not report the s-

tandard deviations for the experiments on the MORPH II
dataset. Now we list the standard deviations according to

Table 4. Quantitative results with different methods. D-E for De-
terministic Embeddings, P-E for Probabilistic Embeddings, POE
for Probabilistic Ordinal Embeddings (our method).

Method Classification based Ranking based
D-E P-E POE D-E P-E POE

% 28.71 30.44 15.58 19.93 18.87 15.99

the order in Table 3 of our main paper: 0.02, 0.06, 0.02,
0.01, 0.01, 0.03, 0.06, 0.03, 0.02, 0.01. The standard devi-
ations of all six methods in Table 4 of our main paper are
as follows: 0.03, 0.01, 0.02, 0.01, 0.03, 0.01. We observe
very small standard deviations, indicating that the original
conclusions still hold.

6. The Selection of T
Monte-Carlo sampling is ONLY used during training.

To determine the number T of samples, we show the com-
parisons of multiply-accumulate operations (MACs) and
performance with different sample numbers T in Table 5.
We set T = 50 for a good trade-off in our experiments. Note
that the extra computation costs are tiny (∼0.1%).

Table 5. The comparison of MACs and performance with different
numbers of samples T on the MORPH II dataset. T = 0 indicates
deterministic embeddings.

T 0 10 50 100 200
MACs (G) 15.497 15.501 15.517 15.538 15.579
MAE 2.64 2.43 2.35 2.36 2.34

7. Online Hard Example Mining
For a triplet (xl,xm,xn), the relationship is |yl−ym| <

|yl − yn|, and we aim to constrain the probabilistic embed-
dings to satisfy d(zl, zm) < d(zl, zn). The proposed ordi-
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Figure 3. Visualization of feature embeddings with the ranking based method on the MORPH II test set.

nal distribution constraint involves triplet selection. Gener-
ating all possible triplets from S = {(l,m, n)

∣∣ |yl − ym| <
|yl − yn|} is inefficient since many of them easily fulfill the
ordinal distribution constraint and do not contribute to the
network training [1]. One way to address this issue is to s-
elect hard triplets. In this paper, we adopt a simple online
hard example mining strategy to ensure fast convergence.
We assume that the triplet (l,m, n) is a hard one when the
difference between |yl − ym| and |yl − yn| is small. For
a batch of training data with N samples, we construct N
triplets from them. We first set each sample in the batch as
the anchor sample l. Then the next adjacent sample in the
batch is selected as the second element of the correspond-
ing triplet. The third element is chosen from the remaining
N −2 samples which is most likely to violate the constraint
according to the above assumption. Specifically, the sam-
ple that minimizes

∣∣ |yl − ym| − |yl − yn| ∣∣ and satisfies
|yl − ym| 6= |yl − yn| is selected. In this way, we obtain
N triplets for each batch. Experimental results show that
this strategy can achieve satisfactory results. It is an inter-
esting future work to explore more advanced hard example
mining strategies.
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