
Supplementary Material:

Lighting, Reflectance and Geometry Estimation from 360◦ Panoramic Stereo

In this Supplementary Material, we present videos, ad-

ditional implementation details, and further results of our

method. Section 1 describes the contents in the videos. The

detailed architecture of our RN-Net is illustrated in Sec-

tion 2 and Table 1. More comparisons on the reflectance and

normal estimation are shown in Section 3. We also present

more visualizations for ablation studies in Section 4.

1. Video for Illumination Estimation

Two videos are provided for showing our estimated illu-

mination map and inserted mirror-objects. Some example

screenshots of the videos are shown in Fig. 1. We strongly

encourage the reader to watch the attached video for a

better appreciation of the performance of our method.

In the video of scene ‘barbershop’, we compare our es-

timated lighting with Li et al. [2], Lighthouse [3], and the

ground truth. Li et al. [2] proposed a method to per-pixel-

independently estimate the lighting in the scene. Hence, it

is easy to notice the inconsistency of their lighting between

each frame. Li et al. [2] utilized a spherical Gaussian to rep-

resent the lighting in low-frequency. This representation of

the lighting is not suitable for mirror-object insertion, as the

mirror-object looks diffuse in their results. Lighthouse [3]

took the scene geometry into consideration, to generate the

spatially-coherent lighting at each location. However, they

simplified the scene geometry to a coarse-to-fine model to

save computational resources. Hence, their estimated light-

ing also lacks high-frequency structures. Besides, due to the

limited field of view in their perspective input, their imag-

ination of the unseen scene relies on the past data. In the

results, they fail to recover the unseen region. Hence, the

reflections on their mirror-object are far from satisfactory.

Our method takes the 360◦ stereo input to fully observe the

lighting and geometry of the entire scene. Note that our es-

timated illumination map changes smoothly under the con-

straints of scene geometry. We are also able to recover the

high-frequency lighting in high quality. The 3D spatially-

coherent and high-definition lighting both enable us to in-

sert the moving mirror-object in the scene with realistic re-

flection effects.

In the video of scene ‘hall’, we demonstrate a mirror-

sphere, relighted by our estimated illumination map, mov-

Figure 1. The above are screenshots from our two supplementary

videos. The top compares our method to other methods on a syn-

thetic scene ‘barbershop’ along with the ground truth. The bottom

demonstrates insertion of a moving mirror-sphere in the real scene

‘hall.’ Videos are found in the attached .mp4 files.

ing around the entire scene.

2. Details of RN-Net

The detailed architecture of RN-Net is illustrated in Ta-

ble 1. The input is first processed by the Encoder. After

four residual blocks in the Encoder, the output feature map

at 4 is then fed to the two decoders for reflectance and nor-

mal estimation separately. When training the network, we

found that the reflectance requires more layers to learn as



Encoder

0 7× 7 conv, k0 features , stride 2 H/2×W/2× k0
3× 3 max pooling, stride 2 H/4×W/4× k0

(3× 3 conv, k1 features) ×2, residual H/4×W/4× k1
1 (3× 3 conv, k1 features) ×2, residual H/4×W/4× k1

(3× 3 conv, k2 features) ×2, stride 2, residual H/8×W/8× k2
2 (3× 3 conv, k2 features) ×2, residual H/8×W/8× k2

(3× 3 conv, k3 features) ×2, stride 2, residual H/16×W/16× k3
3 (3× 3 conv, k3 features) ×2, residual H/16×W/16× k3

(3× 3 conv, k4 features) ×2, stride 2, residual H/32×W/32× k4
4 (3× 3 conv, k4 features) ×2, residual H/32×W/32× k4

Reflectance Decoder Normal Decoder

2× bilinear upsample H/16×W/16× k4 2× bilinear upsample H/16×W/16× k4
(3× 3 conv, k3 features) ×2, residual H/16×W/16× k3

r1 (3× 3 conv, k3 features) ×2, residual H/16×W/16× k3 n1 (3× 3 conv, k3 features) ×2, residual H/16×W/16× k3
Add 3 and r1 H/16×W/16× k3 Add 3 and n1 H/16×W/16× k3

2× bilinear upsample H/8×W/8× k3 2× bilinear upsample H/8×W/8× k3
(3× 3 conv, k2 features) ×2, residual H/8×W/8× k2

r2 (3× 3 conv, k2 features) ×2, residual H/8×W/8× k2 n2 (3× 3 conv, k2 features) ×2, residual H/8×W/8× k2
Add 2 and r2 H/8×W/8× k2 Add 2 and n2 H/8×W/8× k2

2× bilinear upsample H/4×W/4× k2 2× bilinear upsample H/4×W/4× k2
(3× 3 conv, k1 features) ×2, residual H/4×W/4× k1

r3 (3× 3 conv, k1 features) ×2, residual H/4×W/4× k1 n3 (3× 3 conv, k1 features) ×2, residual H/4×W/4× k1
Add 1 and r3 H/4×W/4× k1 Add 1 and n3 H/4×W/4× k1

2× bilinear upsample H/2×W/2× k1 2× bilinear upsample H/2×W/2× k1
(3× 3 conv, k0 features) ×2, residual H/2×W/2× k0

r4 (3× 3 conv, k0 features) ×2, residual H/2×W/2× k0 n4 (3× 3 conv, k0 features) ×2, residual H/2×W/2× k0
Add 0 and r4 H/2×W/2× k0 Add 0 and n4 H/2×W/2× k0

2× bilinear upsample H ×W × k0 2× bilinear upsample H ×W × k0
(3× 3 conv, k5 features) ×2, residual H ×W × k5

r5 (3× 3 conv, k5 features) ×2, residual H ×W × k5 n5 (3× 3 conv, k5 features) ×2, residual H ×W × k5
Reflectance 3× 3 conv, 3 features H ×W × 3 Normal 3× 3 conv, 3 features H ×W × 3

Table 1. Network architecture of RN-Net. All convolutional layers use a ReLu activation and Batch normalization, except for the prediction

layer. For RN-Net in original scale Φ1, we set H = 512,W = 1024 and k0,...,5 = [10, 16, 32, 64, 128, 10]. For RN-Net in small scale

Φ 1
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, we set H = 128,W = 256 and k0,...,5 = [64, 64, 128, 256, 512, 32].

Figure 2. The 360◦ stereo camera setup we use for capturing the

real scene.

it contains more high-level features than normal estimation.

Hence, we reduce the layers of normal decoder by half to

speed up the training and reduce overfitting.

3. Reflectance and Normal Estimation

As shown in Fig. 3, our results are quantitatively better

than all the competing methods. Besides, the errors are only

computed based on the cropped region of the image for fair

comparison. It is worth mentioning that our method also

performs well outside the cropped regions.

We test our method on public real scene ‘room’ and

‘hall’, provided by 360SD-Net [4] 1, as shown in Fig. 4.

4. Ablation Study

We provide more visualizations for the comparison on

the ablated versions of our method in Figs. 5 and 6. From

top to bottom, the row denotes the 360◦ input, origin RN-

Net, pyramid RN-Net, and our full method with the render-

ing and total variation refinement, respectively. The scale-

invariant mean-square-error (sMSE) and mean angular error

1360SD-Net [4] used a similar 360◦ stereo setup to capture the

real data. Their data can be acquired at https://github.com/

albert100121/360SD-Net.

2

https://github.com/albert100121/360SD-Net
https://github.com/albert100121/360SD-Net
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sMSE: 0.0489

sMSE: 0.0374

sMSE: 0.0309

Angular Error: 64.8°

Angular Error: 33.1°

Angular Error: 21.3°

sMSE: 0.0530 Angular Error: 69.5°

sMSE: 0.0398 Angular Error: 29.8°

sMSE: 0.0395 Angular Error: 23.8°

Barbershop Classroom

Figure 3. Comparison to other methods: estimated reflectance and normal on synthetic scene ‘barbershop’ and ‘classroom’. The scale-

invariant mean-square-error (sMSE) and mean angular error shown in the bottom is evaluated on the cropped regions for all the methods.

Better view on screen with zoom-in.
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Room Hall

Figure 4. Comparison to other methods: estimated reflectance and normal on real scene ‘room’ and ‘hall’. Better view on screen with

zoom-in.
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sMSE: 0.038

sMSE: 0.034

sMSE: 0.026

Angular Error: 25.1°

Angular Error: 18.3°

Figure 5. Ablation study: estimated reflectance and normal of the

ablated versions of our method on synthetic scene ‘classroom’.

is computed on the full 360◦ images in ablation study. Both

figures demonstrate that the pyramid structure improves re-

flectance and normal. It is also clear that the rendering and

refinement module can effectively reduce the noise and out-

liers of the reflectance map.

References

[1] Jonathan T Barron and Jitendra Malik. Intrinsic scene prop-

erties from a single rgb-d image. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 17–24, 2013. 3

[2] Zhengqin Li, Mohammad Shafiei, Ravi Ramamoorthi, Kalyan

Sunkavalli, and Manmohan Chandraker. Inverse rendering for

complex indoor scenes: Shape, spatially-varying lighting and

svbrdf from a single image. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 2475–2484, 2020. 1, 3

[3] Pratul P Srinivasan, Ben Mildenhall, Matthew Tancik,

Jonathan T Barron, Richard Tucker, and Noah Snavely. Light-

house: Predicting lighting volumes for spatially-coherent illu-

mination. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 8080–8089,

2020. 1

T
V

R
efi

n
e

Φ
1
+

1 4

Φ
1

In
p

u
t

Figure 6. Ablation study: estimated reflectance and normal of the

ablated versions of our method on the real scene ‘office’.

[4] Ning-Hsu Wang, Bolivar Solarte, Yi-Hsuan Tsai, Wei-Chen

Chiu, and Min Sun. 360sd-net: 360 stereo depth estimation

with learnable cost volume. In 2020 IEEE International Con-

ference on Robotics and Automation (ICRA), pages 582–588.

IEEE, 2020. 2

4


