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1. More Details of the Datasets

The statistics of each dataset are shown in Table 1 when
setting 5 = 0.5. All datasets provide a training dataset and
test dataset. All the reported accuracies are computed on
the test dataset.

Table 1. The statistics of datasets.

dataset #raining samples/party #test samples
mean | std
CIFARI10 5,000 1,165 10,000
CIFAR100 5,000 181 10,000
Tiny-Imagenet | 10,000 99 10,000

Figure 1 and Figure 2 show the data distribution of 8 =
0.1 and 8 = 5 (used in Section 4.6 of the main paper),
respectively.

2. Projection Head

We use a projection head to map the representation like
[1]. Here we study the effect of the projection head. We
remove the projection head and conduct experiments on
CIFAR-10 and CIFAR-100 (Note that the network archi-
tecture changes for all approaches). The results are shown
in Table 2. We can observe that MOON can benefit a lot
from the projection head. The accuracy of MOON can be
improved by about 2% on average with a projection head.

Table 2. The top1l-accuracy with/without projection head.

\ Method | CIFAR-10 | CIFAR-100 |
MOON 66.8% 66.1%
without FedAvg 66.7% 65.0%
projection FedProx 67.5% 65.4%
head SCAFFOLD 67.1% 49.5%
SOLO 39.8%+3.9% | 22.5%+1.1%
MOON 69.1% 67.5%
with FedAvg 66.3% 64.5%
projection FedProx 66.9% 64.6%
head SCAFFOLD 66.6% 52.5%
SOLO 46.3%+5.1% | 22.3%+1.0%
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3. IID Partition

To further show the effect of our model-contrastive loss,
we compare MOON and FedAvg when there is no hetero-
geneity among local datasets. The dataset is randomly and
equally partitioned into the parties. The results are shown in
Table 3. We can observe that the model-contrastive loss has
little influence on the training when the local datasets are
IID. The accuracy of MOON is still very close to FedAvg
even though with a large ;. MOON is still applicable when
there is no heterogeneity issue in data distributions across
parties.

Table 3. The top-1 accuracy of MOON and FedAvg with IID data
partition on CIFAR-10.

] Method | Top-1 accuracy |
=01 73.6%
=1 73.6%
MOON w=>5 73.0%
L =10 72.8%
FedAvg (1 = 0) 73.4%

4. Hyper-Parameters Study

4.1. Effect of 1

We show the accuracy of MOON with different y in Ta-
ble 4. The best p for CIFAR-10, CIFAR-100, and Tiny-
Imagenet are 5, 1, and 1, respectively. When p is set to a
small value (i.e., 4 = 0.1), the accuracy of MOON is very
close to FedAvg (i.e., © = 0) since the impact of model-
contrastive loss is small. As long as we set ;x > 1, MOON
can benefit a lot from the model-contrastive loss. Overall,
we find that 4 = 1 is a reasonable good choice if they do
not want to tune the parameter, where MOON achieves at
least 2% higher accuracy than FedAvg.

4.2, Effect of temperature and output dimension

We tune 7 from {0.1, 0.5, 1.0} and tune the output di-
mension of projection head from {64, 128, 256}. The
results are shown in Figure 3. The best 7 for CIFAR-
10, CIFAR-100, and Tiny-Imagenet are 0.5, 1.0, and 0.5,
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Figure 1. The data distribution of each party using non-IID data partition with 8 = 0.1.
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Figure 2. The data distribution of each party using non-IID data partition with 5 = 5.

Table 4. The test accuracy of MOON with p from {0, 0.1, 1, 5,
10}. Note that MOON is actually FedAvg when ;o = 0.
‘ I ‘ CIFAR-10 ‘ CIFAR-100 ‘ Tiny-Imagenet ‘

0 66.3% 64.5% 23.0%
0.1 66.5% 65.1% 23.4%
1 68.4% 67.5% 25.1%
5 69.1% 67.1% 24.4%
10 68.3% 67.3% 25.0%

respectively. The best output dimension for CIFAR-10,
CIFAR-100, and Tiny-Imagenet are 128, 256, and 128, re-
spectively. Generally, MOON is stable regarding the change
of temperature and output dimension. As we have shown in
the main paper, MOON already improves FedAvg a lot with
a default setting of temperature (i.e., 0.5) and output dimen-
sion (i.e., 256). Users may tune these two hyper-parameters
to achieve even better accuracy.

5. Combining with FedAvgM

As we have mentioned in the fourth paragraph of Section
2.1, MOON can be combined with the approaches work-
ing on improving the aggregation phase. Here we combine
MOON and FedAvgM [2]. We tune the server momentum
B € {0.1,0.7,0.9}. With the default experimental setting
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Figure 3. The top-1 accuracy of MOON trained with different tem-
peratures and output dimensions.

Table 5. The combining of MOON and FedAvgM.

[ Datasets [ FedAvg | MOON | FedAvgM | MOON+FedAvgM |
CIFAR-10 | 66.3% [ 69.1% | 67.1% 69.6%
CIFAR-100 | 645% | 675% | 65.1% 67.8%

Tiny-Imagenet | 23.0% | 25.1% 23.4% 25.5%

in Section 4.1, the results are shown in Table 5. While Fe-
dAvgM is better than FedAvg, MOON can further improve
FedAvgM by 2-3%.

6. Computation Cost

Since MOON introduces an additional loss term in the
local training phase, the training of MOON will be slower
than FedAvg. For the experiments in Table 1, the average



Table 6. The average training time per round.

| Method [ CIFAR-10 [ CIFAR-100 [ Tiny-Imagenet |
FedAvg 330s 20min 103min
FedProx 340s 24min 135min
SCAFFOLD |  332s 20min 112min
MOON 337s 31min 197min

Table 7. The effect of maximum number of negative pairs. We
tune p from {0.1, 1, 5, 10} for all approaches and report the best
accuracy.

maximum number of negative pairs

top-1 accuracy

k=1 69.1%
k=2 67.2%
k=5 67.7%
k =100 63.5%

training time per round with a NVIDIA Tesla V100 GPU
and four Intel Xeon E5-2684 20-core CPUs are shown in
Table 6. Compared with FedAvg, the computation over-
head of MOON is acceptable especially on CIFAR-10 and
CIFAR-100.

7. Number of Negative Pairs

In typical contrastive learning, the performance usually
can be improved by increasing the number of negative pairs
(i.e., views of different images). In MOON, the negative
pair is the local model being updated and the local model
from the previous round. We consider using a single nega-
tive pair during training in the main paper. It is possible to
consider multiple negative pairs if we include multiple lo-
cal models from the previous rounds. Suppose the current
round is t. Let k denotes the maximum number of negative
pairs. Let 2., = R,i-i(z) (ie., % ey 1S the representa-

tion learned by the local model from (¢ — ¢) round). Then,
our local objective is

exp(sim(z, zgiob)/T)

‘gcon = - 10g ; % K X
exp(sim(z, Zgiob) /T) + D 2;_q exp($im(2, 2hres)/T)

If k£ = 1, then the objective is the same as MOON pre-
sented in the main paper. If k& > t, since there are at most
t local models from previous rounds, we only consider the
previous ¢ local models (i.e., only ¢ negative pairs). There
is no model-contrastive loss if ¢ = 0 (i.e., the first round).
Here we study the effect of the maximum number of nega-
tive pairs on CIFAR-10. The results are shown in Table 7.
Unlike typical contrastive learning, the accuracy of MOON
cannot be increased by increasing the number of negative
pairs. MOON can achieve the best accuracy when k£ = 1,
which is presented in our main paper.

References

[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. arXiv preprint arXiv:2002.05709,
2020.

[2] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measur-
ing the effects of non-identical data distribution for federated
visual classification. arXiv preprint arXiv:1909.06335, 2019.



