On Feature Normalization and Data Augmentation (Supplementary Material)

Boyi Li*!? Felix Wu*® Ser-Nam Lim*
!Cornell University
{b1728,53b344,kilian}@cornell.edu

A. MoEx PyTorch Implementation

Algorithm 1 shows an example code of MoEx in Py-
Torch [5].
x: a batch of features of shape (batch_size,
channels, height, width),
#
#

y: onehot labels of shape (batch_size, n_classes)
norm_type: type of the normalization to use

def moex (x, y, norm_type):

X, mean, std = normalization(x, norm_type)
ex_index = torch.randperm(x.shape[0])
X = X * std[ex_index] + mean[ex_index]
y_b = y[ex_index]
return x, y, y_b
output: model output
y: original labels
y_b: labels of moments
loss_func: loss function used originally
lam: interpolation weight λ
def interpolate_loss (output, y, y_b, loss_func, lam):
return lam x loss_func (output, y) + \
(1. - lam) * loss_func(output, y_b)
f normalization(x, norm_type, epsilon=le-5):
decide how to compute the moments
if norm_type == ’pono’:
norm_dims = [1]
elif norm_type == ’'instance_norm’:
norm_dims = [2, 3]
else: # layer norm
norm_dims = [1, 2, 3]
compute the moments
mean = x.mean (dim=norm_dims, keepdim=True)
var = x.var (dim=norm_dims, keepdim=True)
std = (var + epsilon).sqgrt ()
normalize the features, i.e., remove the moments
x = (x — mean) / std
eturn x, mean, std
Algorithm 1. Example code of MoEx in PyTorch.
B. MoEx for NLP

B.1. Machine Translation on IWSLT 2014

To show the potential of MoEx on natural language pro-
cessing (NLP) tasks, we apply MoEx to the state-of-the-
art DynamicConv [6] model on 4 tasks in a benchmark-
ing dataset IWSLT 2014 [1]: German to English, English
to German, Italian to English, and English to Italian ma-
chine translation. IWSLT 2014 is based on the transcripts
of TED talks and their translation, it contains 167K English
and German sentence pairs and 175K English and Italian

2Cornell Tech

Kilian Q. Weinberger'?
“Facebook Al

sernamlim@fb.com

Serge Belongie!?
SASAPP

fwulasapp.com

sentence pairs. We use fairseq library [3] and follow the
common setup [2] using 1/23 of the full training set as the
validation set for hyper-parameter selection and early stop-
ping. All models are trained with a batch size of 12000
tokens per GPU on 4 GPUs for 20K updates to ensure con-
vergence; however, the models usually don’t improve after
10K updates. We use the validation set to select the best
model. We tune the hyper-parameters of MoEx on the val-
idation set of the German to English task including p €
{0.25,0.5,0.75,1.0} and A\ € {0.4,0.5,0.6,0.7,0.8,0.9}
and use MoEx with InstanceNorm with p = 0.5 and A =
0.8 after the first encoder layer. We apply the same set of
hyper-parameters to the other three language pairs. When
computing the moments, the edge paddings are ignored. We
use two metrics to evaluate the models: BLEU [4] which is
a exact word-matching metric and scaled BERTScore F1
[7].

Table 1 summarizes the average scores (higher better)
with standard error rates over three runs. It shows that
MOoEXx consistently improves the baseline model on all four
tasks by about 0.2 BLEU and 0.2% BERT-F1. Although
these improvements are not exorbitant, they are highly con-
sistent and, as far as we know, MoEx is the first label-
perturbing data augmentation method that improves ma-
chine translation models.

C. More Examples of MoEx

Figure 1 shows more examples of MoEx. We select top
five features out of 64 channels to show here.

References

[1] Mauro Cettolo, Jan Niehues, Sebastian Stiiker, Luisa Ben-
tivogli, and Marcello Federico. Report on the 11th iwslt
evaluation campaign, iwslt 2014. In Proceedings of the
International Workshop on Spoken Language Translation,
2014. 1

[2] Sergey Edunov, Myle Ott, Michael Auli, David Grangier, and
Marc’ Aurelio Ranzato. Classical structured prediction losses
for sequence to sequence learning. In NAACL-HLT, 2018. 1

[3] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,

InputA PONO mean PONO std Top Five Features A in the Stack Top Five MoEx Features in the Stack InputB PONO mean PONO std

IIIIIIIIIIIII;II
EENESwTE
T T
*II!IIIIIEIIIIII
EaEEENNETENREREE
lll'.llll.ll.lll
[N, RAEN. DNR=Z2E
LA N EAEN
ﬁllllllilllll'll

WIIIGIIdIﬂIIIWII
YNENNEEYNNEEE-=N

Figure 1. MoEx with PONO normalization. The features of image A are normalized and then infused with moments p; (PONO mean),
o g (PONO std) from the image B.

Sam Gross, Nathan Ng, David Grangier, and Michael Auli. [5] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
fairseq: A fast, extensible toolkit for sequence modeling. In Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
NAACL-HLT), 2019. 1 Desmaison, Luca Antiga, and Adam Lerer. Automatic differ-

entiation in pytorch. 2017. 1

[4] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. Bleu: a method for automatic evaluation of machine [6] Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin, and
translation. In ACL, 2002. 1 Michael Auli. Pay less attention with lightweight and dynamic

Task | Method BLEU 1 ‘ BERT-F1 (%) 1
Transformer 34.4% -
De-En DynamicConv 35.2% -
DynamicConv | 35.46+0.06 67.2840.02
+ MoEx 35.64+0.11 67.44+0.09
En-D DynamicConv | 28.9640.05 63.75+0.04
¢ | + MoEx 29.1840.10 | 63.86+0.02
I-En DynamicConv | 33.2740.04 65.514+0.02
+ MoEx 33.36+0.11 65.65+0.07
En-lt DynamicConv | 30.4740.06 64.05+0.01
+ MoEx 30.64+0.06 64.21+0.11

Table 1. Machine translation with DynamicConv [6] on IWSLT-
14 German to English, English to German, Italian to English, and
English to Italian tasks. The mean and standard error are based on

3 random runs. ": numbers from [6]. Note: for all these scores,

+

the higher the better.

convolutions. In ICLR, 2019. 1,3

[7] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Wein-
berger, and Yoav Artzi. Bertscore: Evaluating text generation

with bert. In ICLR, 2020. 1

