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A. MoEx PyTorch Implementation

Algorithm 1 shows an example code of MoEx in Py-
Torch [5].
# x: a batch of features of shape (batch_size,
# channels, height, width),
#
#

y: onehot labels of shape (batch_size, n_classes)
norm_type: type of the normalization to use

def moex (x, y, norm_type):

X, mean, std = normalization(x, norm_type)
ex_index = torch.randperm(x.shape[0])
X = X * std[ex_index] + mean[ex_index]
y_b = y[ex_index]
return x, y, y_b
# output: model output
# y: original labels
# y_b: labels of moments
# loss_func: loss function used originally
# lam: interpolation weight $\lambda$
def interpolate_loss (output, y, y_b, loss_func, lam):
return lam x loss_func (output, y) + \
(1. - lam) * loss_func(output, y_b)
f normalization(x, norm_type, epsilon=le-5):
# decide how to compute the moments
if norm_type == ’pono’:
norm_dims = [1]
elif norm_type == ’'instance_norm’:
norm_dims = [2, 3]
else: # layer norm
norm_dims = [1, 2, 3]
# compute the moments
mean = x.mean (dim=norm_dims, keepdim=True)
var = x.var (dim=norm_dims, keepdim=True)
std = (var + epsilon).sqgrt ()
# normalize the features, i.e., remove the moments
x = (x — mean) / std
eturn x, mean, std
Algorithm 1. Example code of MoEx in PyTorch.
B. MoEx for NLP

B.1. Machine Translation on IWSLT 2014

To show the potential of MoEx on natural language pro-
cessing (NLP) tasks, we apply MoEx to the state-of-the-
art DynamicConv [6] model on 4 tasks in a benchmark-
ing dataset IWSLT 2014 [1]: German to English, English
to German, Italian to English, and English to Italian ma-
chine translation. IWSLT 2014 is based on the transcripts
of TED talks and their translation, it contains 167K English
and German sentence pairs and 175K English and Italian
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sentence pairs. We use fairseq library [3] and follow the
common setup [2] using 1/23 of the full training set as the
validation set for hyper-parameter selection and early stop-
ping. All models are trained with a batch size of 12000
tokens per GPU on 4 GPUs for 20K updates to ensure con-
vergence; however, the models usually don’t improve after
10K updates. We use the validation set to select the best
model. We tune the hyper-parameters of MoEx on the val-
idation set of the German to English task including p €
{0.25,0.5,0.75,1.0} and A\ € {0.4,0.5,0.6,0.7,0.8,0.9}
and use MoEx with InstanceNorm with p = 0.5 and A =
0.8 after the first encoder layer. We apply the same set of
hyper-parameters to the other three language pairs. When
computing the moments, the edge paddings are ignored. We
use two metrics to evaluate the models: BLEU [4] which is
a exact word-matching metric and scaled BERTScore F1
[7].

Table 1 summarizes the average scores (higher better)
with standard error rates over three runs. It shows that
MOoEXx consistently improves the baseline model on all four
tasks by about 0.2 BLEU and 0.2% BERT-F1. Although
these improvements are not exorbitant, they are highly con-
sistent and, as far as we know, MoEx is the first label-
perturbing data augmentation method that improves ma-
chine translation models.

C. More Examples of MoEx

Figure 1 shows more examples of MoEx. We select top
five features out of 64 channels to show here.
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Figure 1. MoEx with PONO normalization. The features of image A are normalized and then infused with moments p; (PONO mean),
o g (PONO std) from the image B.
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¢ | + MoEx 29.1840.10 |  63.86+0.02
I-En DynamicConv | 33.2740.04 65.514+0.02
+ MoEx 33.36+0.11 65.65+0.07
En-lt DynamicConv | 30.4740.06 64.05+0.01
+ MoEx 30.64+0.06 64.21+0.11
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the higher the better.
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