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Our supplementary material includes an accompanying
video, further details of the dataset and tools, as well as
further results and comparisons on several tasks and applica-
tions. This supplementary document includes the following:

• Explanation of the accompanying video (Sec. S1)
• Demonstrations of editing applications (Sec. S2)
• Further results on inverse rendering (Sec. S3)
• Ground truth for friction coefficients (Sec. S4)
• Demonstrations to motivate robotic tasks (Sec. S5)
• Results on semantic and instance segmentation (Sec. S6)
• Multi-task estimation and domain adaptation (Sec. S6)
• Photorealistic ground truth for SUN-RGBD (Sec. S7)
• Details of the microfacet BRDF model (Sec. S8)
• Details of the lighting ground truth (Sec. S9)
• Details of physically-based GPU renderer (Sec. S10).

S1. Video

The accompanying video is included at the following
link. It illustrates the following capabilities enabled by the
proposed OpenRooms framework:

• Creating photorealistic synthetic versions of real ac-
quired scans, with side-by-side comparisons

• Beyond shape, extensive ground truth for high-quality
spatially-varying material and spatially-varying lighting
with various elements of complex light transport
• Ground truth for semantic and instance segmentation
• Ground truth for friction coefficients
• Inverse rendering and scene understanding applications
• Image editing applications for augmented reality
• Motivation for robotics applications such as navigation,

pushing and sim-to-real transfer studies, where variations
in material and lighting may be important.

The video also illustrates various steps of the proposed
dataset creation framework, where besides the images and
ground truth, the involved tools are being publicly released
as part of our open framework.

Barron13 [2] Gardner17 [5] Garon19 [6] Li20 [8] Ours
11.5% 28.07% 29.15% 34.84% 38.89%

Table S1: User study on object insertion by comparing to the
ground-truth. Here we compare the lighting prediction results of
different methods against ground truth lighting and report the % of
times that users picked a particular method as being more realistic
than ground truth; ideal performance is 50%. Our result is marked
in (blue). Similar to the results in the main paper, our trained
network outperforms previous state-of-the-art ones.

[2] [5] [6] [8] Ours
Barron13 [2] - 23.37% 13.25% 13.60% 11.81%
Gardner17 [5] 76.63% - 36.25% 39.54% 33.84%
Garon19 [6] 86.75% 63.75% - 42.28% 43.47%

Li20 [8] 86.40% 60.46% 57.72% - 45.23%
Ours 88.19% 66.16% 56.53% 54.77% -

Table S2: User study on object insertion with pairwise compar-
isons. X% in row I column J means that in X% of total cases,
human annotators think method I outperforms method J . Compar-
isons with our method are labeled in (blue). We observe improve-
ments over all prior methods.

S2. Applications: Photorealistic Image Editing

User study: Object insertion A user study was con-
ducted to quantitatively evaluate object insertion perfor-
mance using the inverse rendering network of the main paper.
The network is trained on the proposed dataset and evaluated
on the real dataset of [6], which provides 20 images with
measured ground truth for spatially-varying lighting. Some
qualitative and quantitative results have been included in
Table 6 and Figure 13 of the main paper. We now provide
more comparisons in Table S1, Table S2 and Figure S1.

In Table S1, we summarize comparisons for different
methods against ground-truth lighting. Ideal performance
for this task is 50%, which indicates that the predicted light-
ing and the ground-truth lighting are indistinguishable. The
best two previous methods of [8] (34.84%) and [6] (29.15%)
are trained on SUNCG-related datasets, while our method
(38.89%) outperforms both of them. In Table S2, we show
complete pairwise comparisons for object insertion among
recent state-of-the-art lighting prediction methods. This is
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Figure S1: Qualitative comparisons of object insertion on real images from the dataset of [6].
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Figure S2: Material replacement on a real image using the inverse
rendering predictions from a network trained on our dataset.

a more detailed version of Table 6 in the main paper and
reaffirms that a network trained on the proposed dataset
achieves the best performances. In Figure S1, we show
more qualitative comparisons. The network trained on our
dataset achieves realistic high frequency shading and consis-
tent lighting color.

In conclusion, the dataset created by our framework en-
ables high-quality object insertion with performance better
than methods built on previous datasets.

Qualitative results: material editing We show material
replacement examples on real images in Figure 14 in the
main paper and Figure S2 here. Since we use a per-pixel
environment map to represent spatially-varying lighting, we
can recover complex spatially-varying highlights when we
replace the original material with another glossy material.

S3. Inverse Rendering Trained on OpenRooms

This section includes: (a) further results on light source
detection, (b) quantitative results on per-pixel lighting es-
timation, (c) comparisons of normal estimation with prior
works on real datasets, (d) comparisons for layout estima-
tion, (e) ablation study for the network on our proposed
dataset, (f) qualitative visualization of inverse rendering net-
work outputs on synthetic and real data, when trained on a
synthetic dataset created from ScanNet using the proposed
dataset creation method.

A(10−3) N (10−2) D(10−2) R(10−2) L
Cascade0 9.99 4.51 5.18 6.59 0.150
Cascade1 9.43 4.42 4.89 6.64 0.146

Bilateral solver 9.29 - 4.86 6.57 -

Table S3: Ablation study for the network architecture on our pro-
posed dataset. We report the scale invariant L2 loss for albedo (A),
L2 loss for normal (N ), scale invariant log L2 loss for depth (D),
L2 loss for roughness (R) and scale invariant log(x+ 1) L2 loss
for per-pixel lighting (L). We observe both cascade structure and
bilateral solver can improve the prediction accuracy.

Figure S3: Further results of light source detection on NYUv2 test
images. The top row is with pre-training on OpenRooms and the
bottom row without the pre-training.

Inverse rendering on test set of proposed dataset Table
S3 quantitatively evaluates the performance of the network
trained and then tested on the proposed synthetic dataset
created from ScanNet. We observe that both the cascade
structure and bilateral solver can improve the accuracy of
prediction of most intrinsic components. Figure S4 shows
a few inverse rendering results on our synthetic testing set.
From the figure, we observe that through iterative refine-
ment, the cascade structure can effectively remove noise and
recover high-frequency signals, especially for lighting and
normal prediction. The bilateral solver also helps remove
noise by enhancing the smoothness prior.

Further examples of inverse rendering on real images
Figure S5 shows inverse rendering results on several real
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Synthetic Input Albedo0 Albedo1 AlbedoBS1 Normal0 Normal1

Rendered Roughness0 Roughness1 RoughnessBS1 Depth0 Depth 1

Albedo Gt Normal Gt

Depth GtRoughness Gt
Synthetic Input Albedo0 Albedo1 AlbedoBS1 Normal0 Normal1

Rendered Roughness0 Roughness1 RoughnessBS1 Depth 0 Depth 1

Albedo Gt Normal Gt

Depth GtRoughness Gt
Synthetic Input Albedo0 Albedo1 AlbedoBS1 Normal0 Normal1

Rendered Roughness0 Roughness1 RoughnessBS1 Lighting 0 Lighting 1

Albedo Gt Normal Gt

Lighting GtRoughness Gt

Figure S4: Qualitative visualization of inverse rendering results on synthetic images from the test set of the proposed dataset.

images. We observe that even though the network is trained
on a synthetic dataset, it can generalize well to real data.
For real data, the effectiveness of the cascade structure and
bilateral solver is more apparent, probably due to noisier
initial predictions on real data.

Light source detection We include further examples for
light source detection in Figure S3, besides the quantitative
numbers in Table 4 and visualizations in Figure 10 of the
main paper. We again observe that pre-training on Open-
Rooms is beneficial for detecting both wondows and lamps.

Per-pixel lighting estimation We have shown per-pixel
lighting prediction results on both real and synthetic exam-
ples in Figure 9 of the main paper. We now provide further
qualitative results on real and synthetic data in Figure S5
and Figure S4, respectively. Table S3 shows quantitative
numbers on our OpenRooms validation set. We observe that
our per-pixel lighting prediction is consistent with spatially-
varying intensity and the ground-truth light source position.
Both quantitative and qualitative comparisons show that cas-
cade structure can improve the per-pixel lighting prediction

by making the prediction sharper and less noisy.

Normal prediction Figure S6 shows qualitative compar-
isons with [9] and [12] on three real examples from [9]. We
observe that even though [12] achieves the best accuracy
on NYU dataset, it might overfit to that specific dataset and
might not generalize well to images from other sources.
On the contrary, both [9] and our network achieve less
noisy normal predictions. Our network may sometimes over-
smooth the normal, probably since our scenes are built from
Scan2CAD annotations that usually contain only a small
number of large items of furniture in each room. Therefore,
there may be less geometric detail in our synthetic dataset.
This can probably be solved in the future by procedurally
adding small objects to the rooms to increase the complexity
of the dataset.

Layout prediction For future ease of annotation, we add
an automatic layout predictor using Floor-SP [3] to the Open-
Rooms tools. It accepts a 2D top-down projection of the
point cloud and its mean surface normal as inputs. In the
subsequent steps, the room segmentation is predicted and
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Figure S5: Qualitative visualization of inverse rendering results on real images, using a network trained on synthetic photorealistic images
from the proposed OpenRooms dataset (created based on scans from ScanNet).

Corner Edge Room
Precision Recall Precision Recall IOU

Chen19 [3] 0.358 0.524 0.151 0.191 0.734
Trained on ScanNet 0.531 0.716 0.254 0.316 0.858

Table S4: Comparison of Floor-SP [3] models with pre-trained
weights provided by [3] and weights trained on 1069 ScanNet
scenes. The network trained on our newly labeled scenes perform
significantly better on noisy scanned point cloud.

room loops are formed (we omit the loop merging step since
ScanNet scans generally contain a single room). We refer the
reader to [3] for more details. Since the point cloud generated
by RGB-D scans contain higher levels of noise compared to
the training data used by Floor-SP, we trained a randomly

initialized model on a subset of ScanNet consisting of 1069
scenes with human-annotated layout as ground-truth.

The final layout is evaluated on 103 held-out scenes in
terms of corner precision and recall, edge precision and re-
call, as well as intersection-over-union of the room segmen-
tation. A corner prediction is deemed correct if its distance
to the closest ground truth corner is within 10 pixels. An
edge prediction is deemed valid if its two endpoints pass
the criterion for corners and the edge belongs to the set of
ground-truth edges.

Table S4 shows the comparison between the model
trained on ScanNet and the pre-trained weights provided
by the original implementation of Floor-SP. Figure S7 shows
a qualitative comparison. Note that the room segmentation
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Input Ground-truth Sengupta19 Ours PBRS

Figure S6: Qualitative comparisons of our normal estimation with Sengputa19 [9] and PBRS [12], on real images from [9].
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Figure S7: Comparison of layout reconstruction using the original network from [3] and the network trained on our ScanNet annotation.

performs moderately well despite the low precision and re-
call of the corners and edges. We believe that this is caused
by the ambiguities during layout annotation. Since we re-
quire the walls to be arranged such that they form a closed
loop, for the scans that do not cover the entire room, the
human annotator would have to add false corners and edges
that pass through open areas where the scan is incomplete,
thereby affecting the evaluation of the corner and edge pre-
dictions. On the other hand, false corners and edges do not
affect IoU since it measures the area covered by the room,
rather than the occurrence of predictions.

S4. Ground Truth for Friction Coefficients

In this section, we describe in detail the process for as-
signing per-pixel ground truth for friction coefficients in
OpenRooms scenes mentioned in Sec 4.3 of the main pa-
per. We also show several qualitative examples for assigned
friction coefficients. Since OpenRooms provides complete
control over mapping arbitrary semantically-meaningful ma-
terials to indoor surfaces, such ground truth may enable
future studies in inferring physical properties from images,
or learning robotics tasks conditioned on material properties.

Reflectance disks We follow the concept of reflectance
disks from Zhang et al. [11] for predicting friction coef-
ficients for various materials. The acquisition setup of

5



Simulated reflectance disks Captured reflectance disks

Figure S8: Comparisons of randomly sampled reflectance disks
captured by the system of Zhang et al. [11] (left) and rendered by
our virtual environment (right). We observe the distributions of
highlights and spatially-varying intensities to be similar.

Input image Diffuse albedo

Roughness Friction coefficient

Figure S9: Visualization of friction coefficient in OpenRooms
dataset. We map diffuse albedo and roughness parameters to fric-
tion coefficient based on nearest neighbor search. We observe that
specular materials usually have smaller friction coefficients.

[11] includes a beam splitter, an orthographic camera and a
parabolic mirror, to capture material appearances by densely
sampling from a large range of view directions and a small
range of lighting directions (please see Figure 3 of [11]).
We mimic this capture system to render the reflectance disk
using our physically-based renderer. We uniformly sample
the parameter space of our microfacet BRDF model and
render a reflectance disk for each sampled point. Figure S8
compares the reflectance disks rendered under our virtual
environment and captured by the system. We observe that
the distribution of specular highlights and intensities of the
two sets of reflectance disks can match well.

Deep reflectance codes After obtaining the reflectance
disk, Zhang et al. [11] use a pretrained deep network to
map the reflectance disk to a low dimensional latent space,
which is termed a deep reflectance code. Due to the dense
down-sampling operations, the deep reflectance code is ro-
bust to translation and rotation, which makes it a suitable
representation for modeling intrinsic properties of materi-
als, including the friction properties. Thereafter, they use
K-nearest neighbor method to map deep reflectance code
to friction coefficients. Following their implementation, we
also map our reflectance disks to a deep reflectance code,
to the friction coefficients using nearest neighbor search for
each of our sampled microfacet BRDF parameters. This
gives us a table that allows us to map our microfacet BRDF
parameters to friction coefficients through bilinear interpola-
tion or nearest neighbor search. Figure 16 in the main paper
and Figure S9 in the supplementary show some examples
of our friction coefficient predictions. We observe that spec-
ular materials are more likely to have small coefficients of
friction, which is consistent with physical intuition.

S5. Applications: Robotics, Embodied Vision
In this section, we provide details and examples for the

following: (a) integration of OpenRooms scenes with PyBul-
let for physical simulation, (b) qualitative results of Open-
Rooms scenes and capabilities enabled by such integration,
(c) demonstration of navigation in OpenRooms scenes, (d)
demonstration of pushing tasks with different coefficients of
friction.

Integrating OpenRooms with PyBullet To transform a
static OpenRooms scene to an interactive environment, we
treat each object in the scene as a single link robot and equip
it with a URDF to describe its physical and visual properties.
In our dataset, the object’s 3D mesh and the associated MTL
file are recorded in an OBJ file. Given this OBJ file, we gen-
erate another OBJ file by convex decomposition. The URDF
links these two OBJ files, using the first one for rendering
and the other for collision detection. From the albedo and
roughness images provided in the MTL file, we can estimate
the object’s friction coefficient. Other physical properties,
such as the mass, center of mass and inertial matrix can
also be provided in the URDF or set in the physics engine
later. Having URDFs for each object in the scene, we then
load them along with the robot’s URDF into the physics en-
gine (for example, PyBullet) to allow full interactive physics
simulations.

Qualitative examples All kinds of OpenRooms scenarios
can be integrated with the physics engine (Pybullet in our
case) to create interactive environments where a robot can
act (for example, navigate or push objects). The objects can
be rearranged, the light sources replaced and the materials
changed, boosting the variety of the scenes and motivating
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Figure S10: More examples (bedroom, kitchen, and conference room) of OpenRooms scenarios integrated with a physics engine under
different settings, as well as the images from the corresponding real scenes.

Figure S11: A Turtlebot navigating in a classroom from the brown
cabinet to the pink chair, on floors with different materials.

studies on effect on robotic tasks when such scene properties
are varied. Further, our dataset and tools allow a correspon-
dence between the real scenes used for creating the dataset
and the rendered synthetic scenes, which motivates their use
to create testbeds for studies in sim-to-real transfer. Similar
to Figure 15 of the main paper, we show several examples
of such capabilities enabled by OpenRooms in Figure S10.

Navigation We provide a simple example to show the sup-
port for navigation tasks. In this example, a two-wheeled
Turtlebot is asked to navigate in an indoor room, from a
starting location to a target location. The agent has a three-
dimensional state space S and a four-dimensional continuous
action space A. The state s ∈ S is the agent’s 3D position.
The first two dimensions of the action space A correspond to
moving forward or backward for an non-negative distance d.
The other two dimensions represent turning left or right for
an angle within [−π, π]. The robot is given a sequence of

Figure S12: A Turtlebot pushing a wooden cabinet on floors with
materials of different friction coefficients: wax and carpet, leading
to differing physical outcomes (also see the accompanying video).

actions {a1, a2, . . . , aT } to accomplish the navigation task.
Figure S11 shows a few frames from the resulting video.
Besides directly working on the robot’s 3D positions, we
also provide a variety of observation modes, RGB images,
surface normals, depth images, semantic segmentations and
joint level state space for studying the navigation problems
from different perspectives. In particular, we note that Open-
Rooms may allow navigation studies under different material
properties and lighting conditions.

Pushing with different frictions We conduct pushing ex-
periments to show how the friction coefficients associated
with different materials impact the object’s behavior given
the same pushing force applied by a robot. With the experi-
ment setup (Table S5), a cabinet is placed at position PC

0 and
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Experimental setup
Gravity (m/s2) (0,0,-9.8)
Robot mass (kg) 0.27
Cabinet mass (kg) 2.00
Robot initial position PR

0 (m) (0.5,0,0)
Cabinet initial position PC

0 (m) (0,0,0)
Force exerting time tF (s) 0.08
Observing time tO (s) 1.67
Robot moving speed vR (m/s) (2.4,0,0)
Robot moving distance (m) 0.20

Table S5: Experimental setup for the pushing tasks.

object material friction coefficient
cabinet wood 0.76
floor 1 carpet 0.76
floor 2 wax 0.31

Table S6: Physical properties of the objects involved in the pushing
tasks. The friction coefficients are in the range [0,1].

scenario object position offset (meter)
Pushing on floor 1 0.12
Pushing on floor 2 0.23

Table S7: Comparison of results on the pushing tasks with different
friction coefficients for the floor.

a Turtlebot is initialized at position PR
0 in the world frame.

To generate a horizontal pushing force to the cabinet, the
robot moves towards it at a constant speed vR for time tF .
Then the robot keeps still for time tO and during this period
of time, the cabinet will eventually stop due to the friction
between the cabinet and the floor.

We perform this pushing task with two different floor
materials while keeping the other conditions the same. Table
S6 summarizes the physical properties of the objects appear-
ing in the two scenarios. Table S7 compares the cabinet’s
position offset with respect to its starting position after be-
ing pushed by the robot on the carpet and on the wax floor,
respectively. Figure S12 shows initial and final snapshots
from the simulation videos of the pushing tasks.

Given the floor’s material information, we compute the
per-pixel friction coefficient map from the albedo and the
roughness images, according to the method in Section 4.3
of the main paper and Section S4 of the supplementary. The
average of the resulting map is then fed into the physics
engine as the floor’s friction coefficient. Note that although
not yet supported by popular physics simulators such as
PyBullet, our dataset provides ground truth for spatially-
varying friction coefficients, which can be incorporated into
higher quality simulators in the future.

bbox seg
AP(0.5:0.95) 39.1 48.464
AP-cabinet 34.00 52.97

AP-bed 56.63 66.33
AP-chair 43.89 48.10
AP-sofa 51.19 61.29
AP-table 43.86 53.27
AP-door 63.52 75.74

AP-window 42.81 65.53
AP-bookshelf 46.07 53.24
AP-counter 6.92 7.50

AP-desk 13.39 23.39
AP-curtain 41.27 35.05
AP-bathtub 58.55 62.98

AP-bag 16.52 52.02
AP-otherstructure 1.01 1.19
AP-otherfurniture 60.52 67.78

AP-otherprop 51.81 59.83

Table S8: Instance segmentation results on the OpenRooms dataset
using the label space of NYU.

S6. Segmentation, Multi-Tasking, Adaptation
In this section, we provide: (a) further qualitative results

for semantic segmentation, (b) results for instance segmen-
tation, (c) quantitative and qualitative results for multi-task
shape, material and semantics estimation, (d) domain adap-
tation for depth estimation.

Semantic segmentation The main paper provides quan-
titative numbers and some visualizations for semantic seg-
mentation networks trained on OpenRooms data. More qual-
itative results for semantic segmentation using PSPNet(50)
and DeepLabV3 evaluated on OpenRooms test set and the
NYUv2 test set are in Figures S13 and S14, respectively.

Instance segmentation The results of instance segmenta-
tion on OpenRooms, using the same network architecture
as light source detection, are shown in Table S8 for the
categories that overlap with the NYU label space. A few
qualitative examples are shown in Figure S15, indicating
that the proposed dataset may also be useful for studies in
instance segmentation.

Multi-task learning We quantitatively evaluate our multi-
task model (Cascade0) with estimation of albedo, normal,
depth, roughness as well as semantic segmentation on the
test set of OpenRooms, reporting the results in Table S9. As
compared to the original model which does not include a seg-
mentation branch, our multi-task model provide competitive
results to albedo, normal, depth and roughness estimation
while enable additional semantics estimation with reason-
able performance. Besides the qualitative results in Figure
12 of the main paper, we provide further qualitative results
of the multi-task model in Figure S16 for OpenRooms test
images and Figure S17 for real images.

Domain Adaptation for depth estimation The availabil-
ity of large-scale synthetic data with labels also allow studies
where labels from OpenRooms may be used for domain adap-
tation to real scenes where labels might not be available. In
this section, we show an example for depth estimation, where
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Input PSPNet(50) DeepLabV3 Input PSPNet(50) DeepLabV3
Figure S13: Further qualitative examples of semantic segmentation on OpenRooms.
Albedo Normal Depth Roughness Semantics

loss loss mean(◦) med.(◦) loss Abs Rel RMSE loss mIoU mAcc
Multi-task model 9.47 4.08 14.17 4.90 2.98 0.1066 0.2647 6.69 23.1 28.8

Segmentation-only - - - - - - - - 23.4 28.9
W/o segmentation 8.66 4.12 14.32 5.19 3.15 0.1070 0.2573 6.33 - -

Table S9: Ablation study for models including the multi-task model, the segmentation-only model where the albedo, normal, depth and
roughness heads are removed, as well as the model without the segmentation head while keeping all other four heads, evaluated on the
OpenRooms dataset. We report the scale invariant L2 loss (10−3) for Albedo, L2 loss (10−2) for normal, scale invariant log L2 loss (10−2)
for depth, L2 loss (10−2) for roughness and scale invariant log(x+ 1) L2 loss for per-pixel lighting. Angular errors for normal estimation,
Abs Rel and RMSE errors for depth estimation (valid depth range of 0.1m – 8m), as well as mean IoU (mIoU) and mean accuracy (mAcc)
for semantic segmentation are also included.

OpenRooms is the source domain with 100k images, while
the target domain is unlabeled NYU with 15k frames from
its raw dataset. We train an unsupervised domain adaptation

model for depth estimation using T2Net [13]. We clip the
depth values within the range of [0, 10] meters and evaluate
the predictions within the range of [1, 8] meters, following
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Input PSPNet(50) DeepLabV3 Input PSPNet(50) DeepLabV3
Figure S14: Further qualitative examples of semantic segmentation on NYUv2.

H[DPSOHV�RI�LQVWDQFH�VHJPHQWDWLRQ�RQ�25Figure S15: Qualitative examples of instances segmentation results
on Openrooms.

the settings of [13]. We observe that the domain gap can be
largely addressed with unsupervised domain adaptation in
Table S10 and Figure S18. The target supervised numbers
are trained on the NYUv2 training set which is composed of
1440 frames. Further, pre-training on the large-scale Open-
Rooms synthetic data before fine-tuning on the smaller scale
NYUv2 training data leads to improved performance.

S7. Dataset Creation using SUNRGBD Data

To demonstrate that our framework can generalize to
other datasets, we present our scene reconstruction results
based on scanned indoor scenes from the SUNRGBD dataset.
Unlike ScanNet [4], SUNRGBD only contains partial scans
of the rooms with extremely incomplete and sparse point
clouds. Moreover, unlike Scan2CAD [1], SUNRGBD only
has 3D bounding box annotations for furniture locations and
lacks full poses. Using this as initialization, we adjust the
pose of the CAD models by simply using grid search to
minimize the Chamfer distance between the CAD model
and the point cloud in the bounding box. Then we assign
appropriate materials and lighting to the CAD models, as

described in the main paper. In our experience, differing
qualities of scans need to be addressed for geometry creation
in different datasets, but our material and lighting mapping
transfer across datasets with minimal effort. In Figure S19,
we visualize the reconstruction results for SUNRGBD by
rendering the created scenes from different viewpoints, with
different material assignments. The rendered images present
diverse appearances with plausible material and lighting as-
signments, with complex visual effects such as soft shadows
and specularity being correctly handled.

S8. Microfacet BRDF Model

We use the simplified microfacet BRDF model of [7]. Let
A, N , R be the diffuse albedo, normal and roughness. Our
BRDF model f(A,N,R) is defined as

f(A,N,R, l, v) =
A

π
+

D(h,R)F(v, h)G(l, v,N,R)

4(N · l)(N · v)

D(h,R) =
R4

π((N · h)2(R4 − 1) + 1)2

F(v, h) = (1− F0)2
(−5.55473(v·h)−6.98316)v·h+ F0

G(l, v,N,R) = G1(v,N)G1(l, N)

G1(v,N) =
N · v

(N · v)(1− k) + k
, k =

(R+ 1)2

8

where v and l are the view and light directions, while h
is the half angle vector. Further, D(h,R), F(v, h) and
G(l, v,N,R) are the distribution, Fresnel and geometric
terms, respectively. We set F0 = 0.05, following [7].

10



Input Albedo Normal Roughness Depth Semantics
Figure S16: Further qualitative examples of multi-task estimation on OpenRooms.

Input Albedo Normal Roughness Depth Semantics
Figure S17: Further qualitative examples of multi-task estimation on real images.

Input Supervised Only Domain Adaptation Ground Truth

Figure S18: Qualitative results of depth estimation on Supervised
only model and Domain Adaptation model.

S9. Ground Truth for Lighting

Ground truth for complex light transport effects is dif-
ficult to acquire in real scenes and not available in prior
synthetic datasets. Compared to prior datasets for indoor
lighting estimation such as [8], OpenRooms not only pro-

vides spatially-varying per-pixel environment maps but also
extensive ground truth for light source positions, colors and
intensities. Moreover, it also provides ground truth for indi-
vidual contributions of each light source to the pixel intensity,
rendered with direct illumination and with direct and indirect
illumination combined, with and without occlusion being
considered. Such new supervisions allow us to model the
scene appearance with light sources in the scene turned off
or on, which may enable new challenging lighting editing
applications in the future. Figure 5 in the main paper and
Figure S20 in the supplementary show examples of our light
source supervision. We now provide further implementation
details.
Per-light shading To render the individual contribution
of each light source in the scene, we need to turn all other
light sources off and keep only one light source on. This is
straightforward for lamps, but not for windows, especially if
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lower is better higher is better
Abs Rel Sq Rel RMSE RMSE log δ ¡ 1.25 δ ¡ 1.252 δ ¡ 1.253

Source Only 0.4723 1.0160 1.8520 0.7765 0.2049 0.3806 0.5379
Unsupervised Domain Adaptation 0.2388 0.3060 0.9430 0.3280 0.5770 0.8266 0.9336
Target Only 0.2031 0.2139 0.7477 0.2603 0.6536 0.8968 0.9675
Source + Target Finetuned 0.1721 0.1865 0.6663 0.2206 0.7465 0.9261 0.9753

Table S10: Unsupervised domain adaptation results for depth estimation on NYUv2 labeled test set. Source Only model is trained on
OpenRooms while Unsupervised Domain Adaptation model is trained on OpenRooms and adapted to NYU unlabeled data. Target Only
model is trained on labeled NYUv2. Source + Target Finetuned model uses the Source Only model as pre-trained weight and finetuned on
labeled NYUv2. Metrics are computed using the labeled data which does not appear during training.

SUNRGBD Image View 1 View 2

Figure S19: Synthetic scene reconstruction results using scanned indoor scenes from SUNRGBD dataset. We visualize the reconstructed
scenes rendered from different views with different material assignments.

there are multiple windows in the room, as shown in Figure
S20. To achieve this, we provide the plane parameters of
each window to the renderer. When sampling the environ-
ment map, we check whether the ray hitting the environment
map passes through the plane approximation of the window
geometry. We only consider the contributions of those rays
that pass through the window.

Shading without occlusion We render all the ground-
truth with our customized OptiX-based GPU renderer. OptiX
handles visibility term by calling its rtTrace function to de-
tect if a ray will be occluded. To render without the visibility
term, we simply do not use rtTrace in the renderer.

S10. Physically-Based GPU Renderer

We render our dataset efficiently using a physically-based
GPU renderer. We make one crucial design choice to im-
prove the rendering speed while maintaining the rendering
quality – when rendering the spatially-varying lighting, we
not only uniformly sample the hemisphere, but also sample
the light sources. The contributions of the two sampling
methods can be combined together using the standard power
rule in multiple importance sampling [10]. This allows us
to capture the radiance from small light sources in the scene
with far fewer samples. More formally, let η be the ray direc-

tion, PL(η) be the probability of sampling η when sampling
the light sources, PU (η) be the probability of uniformly
sampling the hemisphere and I be an indicator function that
is equal to 1 when a light source is sampled and 0 otherwise.
Further, let L(η) be the radiance. Then, the contribution of
sampling η towards the corresponding pixel on the hemi-
sphere can be written as:

I · P2
L

P2
L +P2

U

L

PL
+ (1− I) · P2

U

P2
L +P2

U

L

PU
, (S1)

where dependence of L, PL, PU on η is omitted for clarity.
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