
Supplementary Material for
POSEFusion: Pose-guided Selective Fusion for

Single-view Human Volumetric Capture

Zhe Li1, Tao Yu1, Zerong Zheng1, Kaiwen Guo2, Yebin Liu1

1Department of Automation, Tsinghua University, China 2Google, Switzerland

In this supplementary material, we mainly introduce our
implementation details, the system performance, and addi-
tional experiments.

A. Implementation Details
A.1. Initialization

Given the tracked SMPL model [2] in the current frame,
we firstly allocate a 3D volume which contains the SMPL.
For each voxel, we calculate the Euclidean distance be-
tween its center with SMPL, and select valid voxels (points)
near the SMPL with a threshold of 8cm.

A.2. Pose-guided Keyframe Selection

SMPL Remeshing Due to the uneven distribution of ver-
tices of the original SMPL [2], we remesh the original
SMPL into an isotropic triangular template using [1] as
shown in Fig. 1. We then transfer the parameters (e.g.,
blending weights) in [2] to the new template. Using the new
template with uniform triangles, the visibility energy can be
calculated without the negative impact of dense vertices in
the face and hand regions as shown in Fig. 1(a). In our
experiment, the new template contains 6839 vertices and
13690 faces. For simplicity, we also call the new template
SMPL in the main paper and this supplementary material.
Block Division by Visibility Though the formulated dy-
namic programming (DP) solution can provide a temporally
continuous keyframe trail, this trail in the first iteration de-
noted as T 1 may cross the diagonal region of the energy ma-
trixE (the red rectangle in Fig. 2(a)), which indicates that in
this region the selected keyframe ti is very close to the cur-
rent i-th frame, i.e., the i-th and ti-th frames have roughly
the same visible region of the human body. In the second
iteration, the DP generates another trail denoted as T 2 as
shown in Fig. 2(b). It is obvious that for the red rectangle
region T 2 has more contribution for the visibility comple-
mentarity, however, T 2 may be discontinuous with T 1 on
the boundary of the red rectangle. This will deteriorate the
temporal continuity of the reconstructed details in invisible
regions in this rectangle region.

Figure 1. SMPL remeshing using [1]. (a)(b) The wireframes of the
original SMPL and the new template, respectively.

Figure 2. Illustration of the block division by the visibility energy.
(a)(b) the keyframe trail on the energy matrix E in the first and
second iteration without block division, respectively, and in the
red rectangle the selected keyframe in the first iteration is very
close to the current frame; (c) the divided blocks by the visibility
matrix Ev of the first iteration.

Our observation is that the red rectangle usually oc-
curs when the visible region changes significantly, e.g.,
the performer turns from facing the camera to back fac-
ing it, which can be intuitively seen from the visibility ma-
trix Ev of the first iteration (the (i, j)-th element of Ev is
1 − Evisibility(Ki, j)) as shown in Fig. 2(c). We therefore
firstly divide the whole sequence as several blocks using Ev
as shown in Fig. 2(c). If the trail crosses two individual
blocks, the red rectangle will be bounded, then we main-
tain a fixed-size FIFO (first-in-first-out) queue Q for the
rectangle region and push the selected keyframes of pre-
vious frames intoQ. Q is considered as the keyframe set of
the red rectangle region to guarantee the temporally smooth
transition of the reconstructed invisible details. In our ex-
periment, the threshold of block division is 0.3, and the size
of Q is 10.



A.3. Occupancy Inference

Our occupancy inference network is based on PIFu [4]
which consists of a Stacked Hourglass network [3] as the
image encoder and a MLP with 258, 1024, 512, 256, 128,
and 1 neurons in each layer. To fully utilize the depth in-
formation, we also encode the depth image and add a PSDF
feature to MLP. The PSDF of a 3D point x is defined as

PSDF (x) =

{
xz − d ,xz − d < 0

0 ,xz − d ≥ 0
, (1)

where xz is the z-axis coordinate of x, and d is the depth
value sampled at the projected location of x on the depth
image. We render a synthetic dataset (https://web.
twindom.com/) to generate depth and color images as
training data, and utilize 5000 images to train this network.
When training, the batch size is 4, the learning rate is 1 ×
10−3 and the number of epochs is 100.

A.4. Collision Handling

Collision Detection Based on the SMPL model, we first
calculate the distance between every two vertices, and con-
struct a symmetrical distance matrix D ∈ RN×N (N is the
vertex number), andDij is the distance between the i-th and
j-th vertices. For the current frame (the t-th frame) and one
keyframe (the k-th frame), we calculate Dt and Dk respec-
tively. And the collided vertices on the current SMPL are
detected by the condition:

Dt
ij < τ1, Dk

ij > τ2, (2)

which means that the i-th and j-th vertices collide with each
other in the current frame. All the collided SMPL vertices
are denoted as Vc. The voxels corresponding to Vc are also
detected. In our experiment, τ1 = 0.02m and τ2 = 0.05m.
Searching No-collision Frame Starting from the current
frame, we search for a no-collision frame both forward and
backward. We calculate the proportion of SMPL vertices
that belong to Vc but do not meet the collision condition
(Eq. 2) during searching each frame. If the proportion is
less 30%, the no-collision frame is found. Then we deform
the reconstructed model of the no-collision frame to the cur-
rent frame, and integrate the deformed model into implicit
surface fusion. In the fusion procedure, we first generate a
3D mask in the volume by the collision flag, and then per-
form 3D distance transform to generate a continuous weight
volume for integrating the deformed model.

A.5. Parameter Setting

In the keyframe selection, we select K = 4 keyframes
for each frame. And in the first iteration, λvisibility = 1.5, and
λvisibility = 3.0 in the subsequent iterations. In the adaptive
blending weight, we set τ = 0.02 and σ = 100.

Figure 3. Intermediate results during reconstruction of one frame.
In each rectangle, from left to right are the reference color image,
warped SMPL, dense reconstruction and color-encoded blending
weights, respectively.

Figure 4. Quantitative comparison against the greedy algorithm on
the mean multi-view depth fitting error.

B. Performance
We implement POSEFusion on one PC with one

NVIDIA RTX 2080Ti, and the performance mainly de-
pends on the number of keyframes. The time of processing
one keyframe is almost 1.87 secs, which consists of 1.53
secs for deforming points and collision detection, 0.02 secs
for loading images, 0.3 secs for occupancy inference, and
0.02 secs for blending occupancy values. In our experi-
ment, we perform the pose-guided keyframe selection to se-
lect K = 4 keyframes, and consider the current frame and
the 3 frames around it as keyframes as well for denoising.
So the keyframe number is 7, and the time cost for recon-
structing one frame is 13 secs. Moreover, we believe the
runtime of this system could be further improved by Ten-
sorRT and other GPU toolkits.

C. Additional Experiments
Intermediate Results In Fig. 3, given one current frame
and its keyframe set, we demonstrate all the intermediate
results including the reference color image, warped SMPL,
dense reconstruction and color-encoded blending weights
within the current frame and each keyframe.
Quantitative Comparison against Greedy Algorithm
Fig. 4 demonstrates the mean multi-view fitting errors of the
results using the dynamic programming (DP) and greedy
algorithm, respectively. And the average error of the whole
sequence using DP and greedy algorithm are 0.7507 cm and
0.7732 cm, respectively. It shows that dynamic program-
ming can produce the global optimum by considering the
energy sum of the whole sequence, and achieve more phys-
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Figure 5. Reconstructed invisible details and visualization of per-
vertex errors in several frames. From top to bottom are results with
both energies, without the pose energy and without the visibility
energy, respectively.

ically accurate reconstruction.
Quantitative Ablation Study of Pose-guided Keyframe
Selection Besides the mean vertex errors demonstrated in
the main paper (Fig. 13) , we also show the reconstructed
results and visualization of per-vertex errors in this ablation
study in Fig. 5. It shows that with both visibility and pose
guidance, the selected keyframe can cover invisible regions
and share the similar poses with the current frame, so that
physically plausible invisible details are recovered.
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