
PointNetLK Revisited
Supplementary Material

Xueqian Li1 Jhony Kaesemodel Pontes1 Simon Lucey2,3

1Argo AI 2The University of Adelaide 3Carnegie Mellon University
xueqianl@alumni.cmu.edu jpontes@argo.ai simon.lucey@adelaide.edu.au

1. Introduction
Here we provide additional information to supplement

our main submission regarding the derivations of our vox-
elized analytical Jacobian, our network design strategies,
different loss functions, and extra experimental results.

2. Voxelized Analytical Jacobian Derivation
We show a 2D illustration of our voxelization strategy in

Fig. 1 (in our experiments, we voxelized the point cloud in
the 3D space).

In our main submission, we used a conditioned warp Ja-
cobian ∂ξVm

∂ξT to transform the local voxel Jacobians to the
global coordinate frame as

Jg = [JV1
, · · · ,JVM

]

(
∂ξV1

∂ξT

)
...(

∂ξVM

∂ξT

)
 . (1)

We explored two different ways to derive the conditioned
warp Jacobian: an explicit and an implicit derivation.

2.1. Explicit derivation

The explicit derivation considers that the local voxel
frame can be transformed to the global frame explicitly.
Formally, let {v} be the voxel coordinate frame, and {g}
be the global coordinate frame. The twist parameters w.r.t
the local frame {v} are ξv=(ωv,υv), and the twist param-
eters w.r.t the global frame {g} are ξg=(ωg,υg), where ω
and υ are the rotations and translations along the xyz axis
respectively. We define the transformation matrix, in homo-
geneous coordinates, from the local frame {v} to the global
frame {g} as

Tgv =

[
R p
0 1

]
, (2)

and the transformation from the global frame {g} to the lo-
cal frame {v} as Tvg . Then, we can formulate the relation-

Figure 1. How the voxelization is performed? Given a complex
scene, we voxelize it into regularly spaced voxels as illustrated by
the grid in red. Each voxel containing enough points, defined by
a threshold, is used to extract the PointNet feature and compute its
local Jacobian. The voxels that are empty or with very few points
are discarded, as shown by the purple shaded areas.

ship between these two transformation as

[ξg] = Tgv[ξv]T
−1
gv , (3)

where

[ξg] =

[
[ωg] υg
0 0

]
, (4)

[ξv] =

[
[ωv] υv
0 0

]
, (5)

[ωg] and [ωv] represent the skew-symmetric matrix of ωg ,
ωv respectively. By extending Eq. (3) using Eq. (2), we
achieve,[

[ωg] υg
0 0

]
=

[
R p
0 1

] [
[ωv] υv
0 0

] [
RT −RTp
0 1

]
=

[
R[ωv]R

T −R[ωv]R
Tp+Rυv

0 0

]
=

[
[Rωv] [p]Rωv +Rυv

0 0

]
, (6)

where [p] is the skew-symmetric representation of p. From
the above equation, we get

ωg = Rωv

υg = [p]Rωv +Rυv, (7)

1

Figure 2. Network design strategies. Different combination of the network design strategies can be chosen to improve the accuracy and
the efficiency of our method. For example, the combinations (a)(c), (a)(d), (b)(c), (b)(d) might be employed.

and in matrix format as[
ωg
υg

]
=

[
R 0

[p]R R

] [
ωv
υv

]
. (8)

For simplicity, we set the rotation between the local voxel
frame and the global frame to be an identity matrix, i.e. R =
I. Therefore, Eq. (8) simplifies to[

ωg
υg

]
=

[
I 0
[p] I

] [
ωv
υv

]
, (9)

which equals to[
ωv
υv

]
=

[
I 0
[p] I

]−1 [
ωg
υg

]
, (10)

Then, the conditioned warp Jacobian can be expressed as

∂ξVm

∂ξT
=

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −p3 p2 1 0 0
p3 0 −p1 0 1 0
−p2 p1 0 0 0 1

−1

.

(11)

Note that the rank of ∂ξVm

∂ξT equals to 6, which means that
the conditioned warp Jacobian is invertible. The intuition of
Eq. (11) is that the local rotation of each voxel is identical
to the global rotation, while the translation of each voxel is
changed when converted to the global translation.

2.2. Implicit derivation

We can also use the implicit expression to compute the
conditioned warp Jacobian as

∂ξVm

∂ξT
=

(
∂vec(P)

∂ξTVm

)−1
· ∂vec(P)

∂ξT
, (12)

where P represents a point cloud, vec(·) is the vectorization
operator. Since ∂vec(P) will be canceled out in Eq. (12),
we can choose P to be any point cloud. In practice, one can
choose P = Vm, where Vm is a point cloud contained in a
local voxel.

In the main submission, we employed the explicit formu-
lation due to its simplicity since we only need to construct
one matrix instead of computing two different warp Jaco-
bians.

3. Network Design Strategies

We noticed that the computational complexity of our
analytical PointNetLK grows linearly with the number of
points (i.e., O(N)), which makes the naive implementation
problematic for training when dealing with large-scale point
clouds. Here we propose simple design strategies to make
our method computationally efficient.
Feature aggregation: A simple strategy is to randomly
split the point cloud of size N into s segments, where each
segment has N/s points. Each point cloud segment s can
then be fed to the network to generate its feature vector fi.
Then, max pooling can be employed to aggregate the col-
lection of feature vectors fi into a global feature vector f .
Note that the feature aggregation strategy does not increase
the time complexity. As shown in Fig. 2 (a), the long green
box is the entire point cloud P that contains N points. We
split it into s segments where each segment Pi is denoted
as a small green box. Each segment is encoded through a
per-point embedding PointNet (orange box) to get a feature
fi which is depicted as a blue box. We then concatenate all
the feature segments to get f . We use max pooling to get
our final feature vector fmax.
Random feature selection: We can also treat each segment
of the point cloud as a small mini-batch. Without the fea-
ture aggregation, we consider each mini-batch as individual
data that enables the network to learn better representations.
Moreover, the network converges faster to a solution. (see
Fig. 2 (b))
Random point selection for the Jacobian computation:
Computing a large analytical Jacobian matrix for a large-
scale point cloud is computationally expensive. A simple
strategy is to compute the Jacobian for a set of randomly se-
lected points. For example, we can randomly sample 10%
of the points to compute the Jacobian and still have a high-
fidelity registration as long as the important salient points
are captured (see Fig. 2 (c)). The dimension of each matrix
for the Jacobian computation shrinks intensively. Theoreti-
cally, our analytical PointNetLK can process the point cloud
with a large number of points.
Point aggregation for the Jacobian computation: Ran-
domly sampling points from a point cloud might result in
loss of information when we have sparse point clouds and
the selected points are not representative of the 3D shape.
In this case, we can aggregate the Jacobian of each point
cloud segment s to capture more important features in a
point cloud. (shown in Fig. 2 (d))

4. Point Distance Loss

Inspired by [4], we can also use the Chamfer distance
loss during training. Rather than directly computing the fea-
ture distance of the source and template point clouds, one
can use a decoder to first reconstruct the point cloud from

Figure 3. Training and testing time. Left figure shows the train-
ing time per epoch when training with the same GPU consump-
tion. Our method takes about 2.5 minutes to train one epoch, while
numerical PointNetLK takes 4.8 minutes and DCP takes 18.7 min-
utes. Right figure is the testing time of one point cloud on a single
CPU. Purple line indicates that our method is fast during testing
and is hardly affected by the number of points. As the number
of points grows, the test time of correspondence-based methods
grows quadratically.

the feature vector, then compute the Chamfer distance be-
tween the reconstructed source and target point clouds. The
point distance loss is defined as

LP =
1

|P̃T |

∑
x∈P̃T

min
y∈P̃S

‖x− y‖22 +
1

|P̃S |

∑
y∈P̃S

min
x∈P̃T

‖x− y‖22,

(13)

where P̃ is the reconstructed point cloud.
Furthermore, we can combine the loss functions as

following: L1=LG+Lφ for supervised learning, where
LG is the transformation loss and Lφ is the feature loss;
L2=LG+LP for semi-supervised learning; and L3=LP for
unsupervised learning. We employ L1 for most of our ex-
periments. The L2 and L3 are used for ablation studies.
Please refer to the main submission for details on the LG
and Lφ losses.

5. Results

5.1. Efficiency

Fig. 3 demonstrates that our method is more computa-
tionally efficient than other methods during training and
testing. We trained each network using 1, 000 points and
a single GPU. During testing, we varied the number of
points from 100 to 10, 000. Using a simplified PointNet
with 3 layers and only 100 points for the Jacobian compu-
tation, our method is faster than the original PointNetLK. It
also requires less space and time than other methods, espe-
cially when the number of points is large. With the number
of points increasing, our method still maintains high effi-
ciency. This suggests that our approach has the potential to
efficiently cope with large number of points.

Numerical Analytical Random Aggregated Aggregated Random Rot. Error (degrees) Trans. Error
Jacobian Jacobian Jacobian Jacobian feature feature LG Lφ LP RMSE Median RMSE Median
1 X X X X 8.1825 3.63e-6 0.0743 5.96e-8
2 X X X 5.2323 2.47e-6 0.0580 5.96e-8
3 X X X X X 5.5578 2.83e-6 0.0493 5.96e-8
4 X X X X X 3.3502 2.17e-6 0.0307 4.47e-8
5 X X X X 3.3234 2.18e-6 0.0380 4.47e-8
6 X X X X X 3.6901 2.12e-6 0.0382 3.73e-8
7 X X X X X 6.0874 2.77e-6 0.0665 5.96e-8
8 X X X X X 5.0043 2.13e-6 0.0546 4.47e-8
9 X X X X 4.4247 1.71e-6 0.0481 2.98e-8
10 X X X X X 4.2186 1.91e-6 0.0457 2.98e-8

Table 1. Ablation study. Results on different network design strategies and loss functions. The analytical PointNetLK achieved higher
fidelity than the original PointNetLK with numerical Jacobian, which highlights the advantage of our analytical Jacobian. Using random
features improved the alignment results. Random Jacobian computation did not lower the registration accuracy. Replacing the feature
difference loss Lφ with a point distance loss LP did not drastically improve the registration performance.

Figure 4. Partial registration. Left figure shows the success ratio
of the rotation and the right figure is the translation success ratio.
Our method is denoted as purple line, which has the highest suc-
cess ratio for the rotation error metric, and relatively high success
ratio for the translation error metric.

5.2. Partial data

In the partial data experiment, we followed similar set-
tings as in [1]. The simulation process was to set a camera at
the origin facing at direction (θ, φ) in the spherical coordi-
nate, where φ is the polar angle, and θ is the azimuth angle.
We sampled φT from a normal distribution (0◦, 5◦) and θT
from a normal distribution (45◦, 5◦) for template, and φS
from a normal distribution (15◦, 5◦) and θS from a normal
distribution (30◦, 5◦) for source. Then, we moved the tem-
plate/source point cloud along the vector [r, θ, φ]T , where
the distance r was set as 2. Next, we determined which
points were visible to the camera. These visible points were
the partial template/source point cloud used in our experi-
ments.

As shown in Fig. 4, our method achieved higher accuracy
than the other methods in rotation error metric. However, in
translation, all the methods showed relatively high success
ratio, while DCP and DeepGMR achieved better results.

5.3. Ablation study

Table. 1 shows quantitative results for different Jacobian
computation strategies, different feature extraction strate-
gies, and different loss functions. The first two rows are the

Figure 5. Comparison with DGR [2]. The purple bars are the an-
alytical PointNetLK trained on ModelNet40, and the red bars are
the model trained on 3DMatch. Our method is robust to the ini-
tial misalignment with smaller root mean squared error (RMSE),
while being competitive to DGR in median errors. This shows that
our method has higher robustness than DGR when looking at all
registration cases. Note that our model trained on synthetic Mod-
elNet40 dataset still achieved high accuracy, which highlights the
superior generalizability of our analytical PointNetLK.

canonical PointNetLK. Replacing feature difference loss
Lφ and transformation error loss LG with single point dis-
tance loss LP in row 2 improved the accuracy. The row
3-10 shows results of our analytical PointNetLK. It did not
lose accuracy when aggregating feature for the entire point
cloud (shown in rows 3, 7, 9, and 10). When using random
feature rather than aggregated feature (rows 4, 5, 6, and 8),
we improved the fidelity. Aggregating points for Jacobian
computation (rows 7, 8, 9, and 10) slightly increased the fi-
delity but did not increase the accuracy, while computing Ja-
cobian using random points (rows 3, 4, 5, and 6) performed
slightly better in RMSE metric. Adopting point distance
loss rather than feature loss (rows 5, 6, 9, and 10) would
not likely improve the performance drastically. Note that
with random feature or computing Jacobian using random
points, our method is faster.

5.4. Comparison with DGR on 3DMatch

In our main submission, we showed how our
method compares to the Deep Global Registration (DGR)

Figure 6. Failure cases. In the cases where there is a large space
with a few features (left figure) or there is a small overlapped area
(right figure), our method failed to achieve accurate registrations.

Figure 7. Visual results of our method evaluated on the KITTI
dataset. The upper part shows two testing sequence results, and
the lower part is the zoom-in figure of these two results.

method [2] in terms of the success ratio for the rotation and
translation error metrics evaluated in the 3DMatch dataset.
Here, we further show the RMSE and Median error met-
ric results. In Fig. 5, our method, despite trained on the
synthetic ModelNet40 dataset or the real-world 3DMatch
dataset, achieved robust registration results for both rotation
and translation. Our method is robust to the initial misalign-
ment with smaller root mean squared error (RMSE), while
being competitive to DGR in median errors. This shows that
our method is more robust (smaller RMSE) than DGR, and
will not fail with extreme large transformations. Note that
the error metrics were calculated from all registration cases
which clearly indicates the generalizability and robustness
of our method.

5.5. Failure cases on 3DMatch

In Fig. 6, we show two typical failure cases of our
method on the 3DMatch dataset. If the large-scale scenes
have sparse features, our voxelized analytical PointNetLK
will likely not capture robust features across the entire 3D
space, thus leading to bad registrations. Another typical

Rot. Error (degrees) Trans. Error (m)

Algorithm RMSE ↓ Median ↓ RMSE ↓ Median ↓
Ours (no voxelization) 48.741 2.490 11.008 0.893
Ours (27 voxels, 37 points) 34.798 1.150 2.692 0.177
Ours (8 voxels, 125 points) 34.351 0.885 2.994 0.131
Ours (27 voxels, 148 points) 34.831 0.917 2.721 0.131
Ours (8 voxels, 500 points) 34.216 0.831 2.599 0.118
Ours (8 voxels, 1,000 points) 34.433 0.813 2.613 0.109

Table 2. Performance on the KITTI dataset. All of our methods
were trained on the synthetic ModelNet40 dataset and tested on
the KITTI dataset to further validate the generalizability of the an-
alytical PointNetLK on a completely different dataset. Although
the mean errors were large, which indicates several complete fail-
ure cases exist in the testing, the overall median errors were small,
showing the high fidelity result of our methods. Note that our
method achieved much better accuracy with the voxelization strat-
egy, especially for translation. Moreover, more voxels with more
points included in its interior improved the performance.

failure case is when the source point cloud and the tem-
plate point cloud have a small overlapped area, and the point
clouds contain a lot of outliers.

5.6. Results on the outdoor KITTI dataset

In order to show further generalizability of our method
on more realistic settings, we demonstrate results on the
KITTI odometry testing dataset [3] in Fig. 7 and Table 2.

References
[1] Yasuhiro Aoki, Hunter Goforth, Rangaprasad Arun Srivatsan,

and Simon Lucey. PointNetLK: Robust & efficient point cloud
registration using PointNet. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
pages 7163–7172, 2019. 4

[2] Christopher Choy, Wei Dong, and Vladlen Koltun. Deep
global registration. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
2514–2523, 2020. 4, 5

[3] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 3354–3361. IEEE, 2012. 5

[4] Xiaoshui Huang, Guofeng Mei, and Jian Zhang. Feature-
metric registration: A fast semi-supervised approach for ro-
bust point cloud registration without correspondences. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 11366–11374, 2020. 3

