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Overview
This supplemental material consists of the following sections:

• In Section A, we provide more visual comparisons with the SOTA methods on real-scanned inputs.

• In Section B, we provide more visual comparisons with the SOTA methods on synthetic inputs.

• In Section C, we present more results on input point sets of varying noise levels.

• In Section D, we show results on input point sets of varying sizes.

• In Section E, we show the evaluation curves in terms of the training epochs for the coarse outputs
Q′ and the refined outputs Q (see Section 3.1 in main paper).
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A. More Visual Comparisons on Real-scanned Inputs
Figures 1-5 demonstrate more visual comparisons on real-scanned point clouds. We apply our method

and two state-of-the-art methods, i.e., MPU [2] and PU-GAN [1], to upsample points, as well as recon-
struct the associated surfaces from the dense outputs. Clearly, our method outperforms others on the
local uniformity, contributing to high-quality reconstructed surfaces.

Figure 1. Comparing point set upsampling (16×) results and reconstructed 3D meshes using different methods
(b-d) from real-scanned sparse inputs (a). For each object, the top row shows point clouds, while the bottom row
shows the reconstructed meshes. Clearly, our method outperforms others on the local uniformity, contributing to
high-quality reconstructed surfaces (1/5).
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Figure 2. Comparing point set upsampling (16×) results and reconstructed 3D meshes using different methods
(b-d) from real-scanned sparse inputs (a). For each object, the top row shows point clouds, while the bottom row
shows the reconstructed meshes. Clearly, our method outperforms others on the local uniformity, contributing to
high-quality reconstructed surfaces (2/5). 3



Figure 3. Comparing point set upsampling (16×) results and reconstructed 3D meshes using different methods
(b-d) from real-scanned sparse inputs (a). For each object, the top row shows point clouds, while the bottom row
shows the reconstructed meshes. Clearly, our method outperforms others on the local uniformity, contributing to
high-quality reconstructed surfaces (3/5). 4



Figure 4. Comparing point set upsampling (16×) results and reconstructed 3D meshes using different methods
(b-d) from real-scanned sparse inputs (a). For each object, the top row shows point clouds, while the bottom row
shows the reconstructed meshes. Clearly, our method outperforms others on the local uniformity, contributing to
high-quality reconstructed surfaces (4/5). 5



Figure 5. Comparing point set upsampling (16×) results and reconstructed 3D meshes using different methods (b-d) from real-scanned sparse inputs
(a). For each object, the top row shows point clouds, while the bottom row shows the reconstructed meshes. Clearly, our method outperforms others
on the local uniformity, contributing to high-quality reconstructed surfaces (5/5).
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B. More Visual Comparisons on Synthetic Inputs
Figures 6-7 demonstrate more visual comparisons on synthetic sparse inputs with three state-of-the-art methods, i.e., PU-Net [3]

MPU [2], and PU-GAN [1]. For each object, We show both the upsampled dense points and the associated error map. Clearly, our
method produces results that are visually most similar to the target points (bottom row in (a)) with the lowest errors, and our dense
points can well preserve tiny local structures with a uniform point distribution; see particularly the blown-up views.

Figure 6. Comparing point set upsampling (16×) results from synthetic sparse inputs (a) using different methods (b-e). We also show the associated
error maps, where the colors reveal the nearest distance for each target point to the predicted point set generated by each method. (1/2).
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Figure 7. Comparing point set upsampling (16×) results from synthetic sparse inputs (a) using different methods (b-e). We also show the associated
error maps, where the colors reveal the nearest distance for each target point to the predicted point set generated by each method. (2/2).
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C. More Upsampling Results on Inputs of Varying Noise Levels
Figure 8 shows more visual comparisons of using our method, MPU [2], and PU-GAN [1] to upsample

sparse inputs that are corrupted by Gaussian noise of increasing levels. Clearly, our method achieves
more uniform upsampling results without excessive noise, under both upsampling rates.

Figure 8. Comparing point set upsampling results produced using different methods under different upsampling
rate, when given noisy sparse inputs with increasing noise level, i.e., 0.1%, 0.5%, 1.0%, and 2.0%.
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D. Upsampling Input Point Sizes of Varying Sizes
Figure 9 shows the upsampling results by applying our method to upsample inputs of decreasing

numbers of points. From these results, we can see that our method produces stable performance without
introducing noise into the results, even for inputs of very small number of points.

Figure 9. Upsampling from inputs of varying sizes.

10



E. Evaluation Curves of Q′ and Q
Figure 10 plots the evaluation curves (16×) in terms of the training epochs for the coarse outputs Q′

(blue) and the refined results Q (orange); see Section 3.1 in main paper. At the early training stage,
our framework first focuses more on Q′ (with a relatively larger weight), so Q′ initially has a lower
CD value, but as the training progresses, Q rapidly improves and surpasses Q′ as shown in the plots,
and both eventually converge to a similar level. This shows the complementary strengths of our dense
generator and spatial refiner, and verifies the effectiveness of our disentangled design.

Figure 10. Evaluation curves in terms of the CD values over the training epochs for the coarse outputs Q′ (blue)
and refined results Q (orange). The unit of CD is 10−3.
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The End


