1. Experimental Details

We designed different task network architectures and
training strategies for different data sets.

In the Digits dataset, we use a simple task model accord-
ing to [10]. The network architecture is shown in Tab. 1.
We applied the ReLU activation layer for all the convolu-
tion layers and fully connected layers. The fc5 and fc6 are
two output layers that are connected to fc4. The softmax
layer is applied for fc5. And the output vector of fc6 is nor-
malized to lie on the unit hypersphere.

Layer ksize stride pad #filters Data shape
input 3,32,32)
convl 5 1 0 64 (64,28,28)
pooll 2 2 (64,14,14)
conv2 5 1 0 128 (128,10,10)
pool2 2 2 (128,5,5)
fc3 (1024,)
fc4 (1024,)
fcS(outl) (10,)
fc6(out2) (128,)

Table 1. Configuration of the task network architecture used in
Digits dataset.

In CIFAR10-C[3] dataset, the task model is a 16 lay-
ers Wide Residual Network(WRN) [15] and the width is 4.
The first layer is a convolution layer with 16 kernels and the
kernel size is 3. Then there are 3 groups of convolution lay-
ers. Each group consists of 2 residual blocks and each block
consists of 2 convolution layers. The number of channels in
the 3 groups is 64, 128 and 256 respectively. An average
pooling layer with the 8 x 8 kernel is used after the third
group. Finally, we apply two fully connected layers to get
the prediction results and the projection vectors. All con-
volution layers are followed by the ReLU activation layers
and the Batch Normalize layers.

In SYNTHIA[1 1], we use the FCN [8] as the task model.
ResNet-50 is applied as the backbone '. First, the features
are extracted by the ResNet-50. Then the coarse segmenta-
tion result is predicted with a 1 x 1 convolutional layer. A
transposed convolution layer is used to upsample the coarse
segmentation result to the input image size. And a fully con-
nected layer is applied after the ResNet-50 to get projection
vectors.

The domain expansion network G in all the experiments
is similar. G can be a variety of structures depending on
related downstream tasks, such as AutoEncoder [6], HRNet
[12], spatial transform network(STN) [4] or a combination
of these networks. In our experiment, we mainly use the
Autoencoder with AdaIN [5] as the generator. GG consists of
the encoder G g, the AdaIN and the decoder G p. First, the

Uhttps://pytorch.org/vision/stable/models.htm1?highlight=fcn_resnet50
#torchvision.models.segmentation.fcn_resnet50

images go through the encoder to get the features. Then the
mean and variance of the features are randomly adjusted by
the AdalN layer. Finally, a new image is generated through
the decoder.

2. Comparison on CIFAR10-C

We train all the models on the CIFAR10 train set, vali-
date the models on the CIFARI1O0 test set, and evaluate the
models on the CIFAR10-C. We show the experimental re-
sults across different types of corruptions with the Sth level
severity in Tab. 2. Our approach has higher average accu-
racy than other approaches. In some corruption types, the
RandAugment[2] approach performs better than us. How-
ever, it is important to note that there is no manual data aug-
mentation in our approach, and our approach can be used
together with RandAugment.

3. Visualization of the feature space

The main idea of PDEN is to improve the generalization
of the model in the unseen domain by learning the domain
invariant feature representation. Fig.1 illustrates the differ-
ence in feature space between PDEN and the baseline mod-
els. For better visualization, we keep all the model output
2-d features. Rows 1 and 2 correspond to the baseline model
and the PDEN. Columns 1, 2 and 3 correspond to different
dataset.

Column 1: The MNIST distribution in feature space of
the baseline model and the PDEN is different. For the base-
line model, each class is distributed in the feature space in a
spindle shape. All samples are far from the decision bound-
ary. For PDEN, the distribution of each class is fan-shaped
in the feature space. In contrast, more samples are close to
the decision boundary in the feature space of PDEN.

Column 2: These two sub-figure represent the distribu-
tion of samples(generated by PDEN) in the feature space of
the baseline and PDEN models. For the baseline model,
the generated samples of different categories are mixed
with each other to such an extent that they cannot be dis-
tinguished. This indicates that the samples generated by
PDEN are hard samples for the baseline model. For PDEN,
the hard samples can be perfectly distinguished.

Column 3: We take MNIST_M as the target domain. In
the feature space of the baseline model, most samples from
MNIST_M are mixed with each other. In the feature space
of PDEN, fewer samples are mixed with each other. This il-
lustrate that PDEN can focus on domain-invariant represen-
tations, so PDEN achieves better generalization on unseen
domains.
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Figure 1. Visualization of different domains in the feature space. Row 1: the feature space of the baseline model. Row 2: the feature space
of the PDEN model. Column 1: the distribution of the MNIST (source domain). Column 2: the distribution of the samples generated by
the generator in PDEN. Column3: the distributions of MNSIT_M (target domain). Different colors correspond to different classes.

Weather Blur Noise
Fog Snow Frost Zoom Defocus Glass Gaussian Motion Speckle Shot Impulse Gaussian
ERM[7] 65.92 7436 61.57 5997 53.71 49.44  30.74 63.81 41.31 3541 25.65 29.01
CCSA[9] 66.94 7455 6149 6196 56.11 48.46 3222 64.73 40.12 33.79 2456 27.85
d-SNE[14] 6599 7546 62.25 5847 5371 50.48 33.06 63.0 45.30 39.93 2795 34.02
GUD[13] 68.29 76.75 69.94 6295 5641 5345 3833 63.93 38.45 36.87 2226 32.43
MADA[10] 69.36 80.59 76.66 68.04 61.18 61.59 47.34 64.23 60.88 60.58 45.18 56.88

AA[l] 84.61 81.04 7232 8394 84.38 52.29 76.26 77.36 52.14 4540 52.54 36.77
RA[2] 85.99 80.13 7497 88.60 89.33 57.70  87.88 79.34 60.50 56.03 55.64 49.68
PDEN 69.64 81.81 84.50 83.73 82.15 60.13  79.31 7672 79.31 81.28 66.79 81.06
Digital
Jpeg  Pixelate Spatter Elastic Brightness Saturate Contrast Avg.
ERM][7] 69.90 41.07 7536 7240  91.25 89.09 36.87 56.15
CCSA[Y] 69.68 40.94 77.91 72.36 91.00 89.42 35.83 56.31
d-SNE[14]  70.20 38.46 7340 7333 90.90 89.27 36.28 56.96
GUD[13] 74.22 5334 80.27 74.64  89.91 82.91 31.55 58.26
MADA[10] 77.14 52.25 80.62  75.61  90.78 87.62 29.71 65.59
AA[1] 73.65 36.12 89.13 7379  94.54 93.79 91.31 71.13
RA[?] 74.92  37.36 9042 7596 93.90 93.17 92.06 74.93
PDEN 85.24 70.82 79.38  75.05 90.98 88.44 55.59 7747

Table 2. Full version of Tab. 3 in the main paper. The experimental result on CIFAR10-C. The model is trained on the clean data of
CIFARI10 and evaluate on CIFAR10-C. We compared the accuracy of 19 types of corruption(only 12 corruptions are shown in the table) at
level 5(the severest) in different methods.



References

(1]

(2]

(3]

(4]

(5]

[6

—_

(7]

(8]

(9]

[10]

[11]

[12]

[13]

(14]

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
strategies from data. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 113-123,
2019. 2

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmenta-
tion with a reduced search space. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 702-703, 2020. 1, 2

Dan Hendrycks and Thomas Dietterich. Benchmarking neu-
ral network robustness to common corruptions and perturba-
tions. arXiv preprint arXiv:1903.12261, 2019. 1

Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.
Spatial transformer networks. In Advances in neural infor-
mation processing systems, pages 2017-2025, 2015. 1

Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4401-4410, 2019. 1

Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114,2013. 1
Vladimir Koltchinskii. Oracle Inequalities in Empirical Risk
Minimization and Sparse Recovery Problems: Ecole d’Eté
de Probabilités de Saint-Flour XXXVIII-2008, volume 2033.
Springer Science & Business Media, 2011. 2

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 3431-3440, 2015. 1

Saeid Motiian, Marco Piccirilli, Donald A Adjeroh, and Gi-
anfranco Doretto. Unified deep supervised domain adapta-
tion and generalization. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 5715-5725,
2017. 2

Fengchun Qiao, Long Zhao, and Xi Peng. Learning to learn
single domain generalization. 2020. 1, 2

German Ros, Laura Sellart, Joanna Materzynska, David
Vazquez, and Antonio M. Lopez. The synthia dataset: A
large collection of synthetic images for semantic segmenta-
tion of urban scenes. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016. 1

Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep
high-resolution representation learning for human pose esti-
mation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 5693-5703, 2019. 1
Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C
Duchi, Vittorio Murino, and Silvio Savarese. Generalizing
to unseen domains via adversarial data augmentation. In S.
Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems 31, pages 5334-5344. Curran
Associates, Inc., 2018. 2

Xiang Xu, Xiong Zhou, Ragav Venkatesan, Gurumurthy
Swaminathan, and Orchid Majumder. d-sne: Domain adap-
tation using stochastic neighborhood embedding. In Pro-

ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 2497-2506, 2019. 2

[15] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

works. arXiv preprint arXiv:1605.07146, 2016. 1



