A. TPU/GPU-optimized Search Space Details

As described in Section 3, our search space is based on
the factorized search space used in EfficientNet [57] with
three major optimizations for TPUs and GPUs. These opti-
mizations include accelerator-friendly space-to-depth/batch,
fused convolution structures, and block-wise activation func-
tions. In addition to these optimizations, we also added a
few more dimensions to Ops in the baseline search space,
such as more choices on SE ratios and convolution kernel
sizes. Table 4 shows the details for the search space.

B. Ablation study on the DC accelerator op-
timized search space and the searched
EfficientNet-X-B0 base model

As summarized in Section 5.1 and Section 6, all enhance-
ments in the DC-accelerator-optimized search space (Sec-
tion 3) contribute to improving accuracy-latency trade-offs
in the searched base model — EfficientNet-X-B0. Table 5
shows the detailed ablation study on how these new model
architecture components, including space-to-depth, fused
convolution structures, and block-wise searchable activation
functions, improve accuracy-latency-Pareto results over the
baseline EfficientNet-B0. The Space-to-depth and fused con-
volution structures improve both the accuracy and speed on
TPUv3 and GPUv100. The trends on the total FLOPs further
confirms our analysis on new search space about activation
functions as described in Section 3 and Section 5.1. Con-
cretely, although activation functions have negligible impact
on total model FLOPs on TPUs and GPUs, they have big im-
pact on performance. On GPUv100, NAS selects ReLU acti-
vation for all layers/blocks for EfficientNet-X-BO0 because
of the performance degradation caused by non-fused swish.
On TPU, NAS selects ReLLU for blocks with depthwise con-
volutions and swish for blocks with vanilla convolutions to
avoid overloading the vector units in TPUv3 as described in
Section 5.1. As a result, the new activation function strategy
improves speed but causes accuracy drop on both GPUv100
and TPUv3. However, thanks to the accuracy improvements
from space-to-depth and fused convolutions, the final accu-
racy is comparable to the baseline EfficientNet-B0O on both
TPUv3 and GPUv100 as shown in Table 5. The hybrid
ReLU and swish activation functions on TPUv3 leads to the
higher accuracy than the ReLU-only activation functions on
GPUv100. Note that in Table 3, we report the lower accuracy
from TPUv3 and GPUv100 as the final score.

On TPUV3, all new enhanced search space components
contribute almost equally in inference speed, with the new
activation function strategy offsetting some of the accuracy
gains. On GPUvV100, the new activation function strategy
causes a more significant inference speedup than other new
model architecture enhancements, but with a bigger accuracy
drop than on TPUv3. This demonstrates the impact of the

12

software stack. We believe a fused swish implementation for
GPU software will make GPUv100 behave similar to TPUV3.

C. Ablation study on latency-aware compound
scaling and the EfficientNet-X family

As summarized in Section 5.2 and Section 6, LACS
achieves a better set of scaling factors than single-objective
compound scaling that originally proposed in the Efficient-
Net [57] work. Clearly, searching for scaling coefficients
at a lower target latency level (e.g., EfficientNet-X-B1) and
using them to create higher latency models (e.g., Efficientnet-
X-B7) is much more cost-effective than directly search-
ing for coefficients at the higher latency model level (e.g.,
Efficientnet-X-B7). However, searching first at low latency
level models and scaling to high latency level models has the
potential to deviate from the empirical optimum from direct
searching at high latency level models, due to non-linear
increases of accuracy and latency with larger depth, width,
and resolution. In this ablation study, we first verify the
efficacy of LACS in maintaining good scaling from small to
large models, without deviation from the empirical optimum.
We then provide more comparisons on results from LACS
and single-objective compound scaling.

To verify the efficacy of LACS, we target the B7 model
level of the EfficientNet-X family on GPU and compare the
scaling factors yielded by LACS at X-B1 level and then
applied at X-B7 level against direct accuracy-latency-Pareto-
search at the X-B7 level to find the empirical optimum coef-
ficients. As shown in Table 6, both the scaling coefficients
and the resulting network dimensions are quite similar. Par-
ticularly, the network dimensions are within 6% of each
other. This verifies that LACS can effectively scale up all
the way to the high end models to form a model family, with
negligible deviations from empirical optima.

With the verified efficacy of LACS, we present detailed
comparisons on model dimensions of EfficientNet-X on
TPUv3 and GPUv100 with the scaling factors obtained by
LACS and by the original single-objective compound scaling
as used in EfficientNet [57]. We first run single-objective
compound scaling that uses accuracy as the sole objective
as proposed in [57]. Even with the new EfficientNet-X-B0
as the base model, the single-objective compound scaling
method finds the same compound scaling factors as with
EfficientNet. On the other hand, LACS finds different com-
pound scaling factors on TPUv3 and GPUv100. Table 2
shows these different scaling factors obtained from LACS
and single-objective compound scaling. Note that since
single-objective compound scaling only uses accuracy as the
sole objective, unlike LACS, it does not generate different
scaling factors for TPUv3 and GPUv100. Table 7 shows
the detailed model dimensions generated by these differ-
ent scaling factors. While LACS creates different families
for TPUv3 and GPUv100, the most notable difference is

Op & layer

Searchable Architectures and Dimensions

Stage size

Total number of stages, with multiple layers per stage

Layers in each stage

Each layer can a simple Conv2D layer or a complete block such as MBConv

Types: Conv2D, DepwiseConv2D, MBConv, fused MBConv, ResidueBottleneckBlock
Kernel size: 3x3, 5x5, 7x7

Convolution Stride: 1, 2, 4 (Stride-2/4 are only allowed in the first layer of a stage, if chosen.)
Expansion Ratio (for MBConv and FusedMBConv): 1, 3, 6
Reshape Space to depth w/ stride-n Conv2D_NxN

Space to batch w/ memory-intensive copy-reshape ops

Activation function

ReLU, swish, searchable at the block level instead of at each layer level

SE ratio

0 (i.e., no SE layer), 1.0, 0.5, 0.25. 0.125

Skip connections

none, identity with pool and/or Conv2D-1x1 are used when feature map tensors mismatch

Table 4: Complete Search Space Details

Model Top-1 Accuracy (%).* | #Params #FLOPs' ol t Inference Latency§(ms)

(TPUv3 / GPUvV100) (Million) (Billion) | (Ops/Byte) (TPUvV3/ GPUv100)
EfficientNet-BO [57] 77.3 53 0.39 19.7 52.4% 13.4/38.1
+SpaceToDepth 77.5 7.2 0.47 25.3 55.8% 11.9/35.6
+Fused Conv 77.8 7.6 0.91 62.5 56.1% 9.5/30.5
+Activation 77.41177.3 7.6 091 63.8 57.3% 8.7/22.5
(EfficientNet-X-BO0)

Table 5: Contribution breakdowns of each enhanced model architectures to inference latency and accuracy on imagenet of the searched
based model EfficientNet-X-B0 on TPUv3 and GPUv100. TPUv3 and GPUv100 results are separated by "/" when they differ, shown as
"TPUV3 results / GPUv100 results". *Only with the different activation function selections, accuracies differ on TPUs and GPUs. Following
common practices, #FLOPs refer to #multiply-and-add operations. 1 is the operational intensity measured on TPUv3. *E is the execution
efficiency measured on TPUV3, w.r.t to roofline instead of peak hardware FLOPs/sec as shown in Equation 1. Only in the compute-bound
region as shown in Figure 2, the roofline and peak hardware FLOPs/sec are the same. $The inference latency are measured for inferencing
128 images on TPUv3 and GPUv100, with mini batch size of 128. Models run in FP16 mode on GPUv100.

LACS search level ‘ tCoefficients a, 3,y ‘ X-B7 Dimensions

LACS at X-B1 level
LACS at X-B7 level

(1.29, 1.16, 1.07)
(1.29, 1.14, 1.08)

(Depth: 75, Res: 368)
(Depth: 79, Res: 350)

Table 6: Scaling coefficients «, 3, v and model dimensions yielded
by LACS at low (X-B1, i.e., EfficientNet-X-B1) level and directly
at high (X-B7, i.e., EfficientNet-X-B7) level on GPUv100. «, 3,
and +y are the base exponential terms to be used together with ¢ as
described in Equation 5. Depth means total number of layers in the
network. Res means the input resolution. Both scaling coefficients
and model dimensions (depth, input resolution) produced by the
methods are quite similar.

that both LACS versions prefer deeper and slimmer models
as compared to original single-objective compound scaling,
with the LACS results on GPU and TPU being 60% ~ 70%
deeper with ~40% smaller input resolutions. The changes
in scaling and the resulted model architectures are caused by
the use of the accuracy-latency multi-objective that provides
more visibility into the hardware architecture details. As a
result, EfficientNet-X has much faster inference speed, with
comparable accuracy to EfficientNet as shown in Table 3
and Figure 3.

13

EfficientNet-X | Single-obj LACS LACS
Model scaling on GPU | on TPU
X-BO (16,224) | (16,224) | (16, 224)
X-B1 (17,240) | (17,229) | (17,229)
X-B2 (19,260) | (20,241) | (20,243)
X-B3 (22,300) | (25,258) | (26,263)
X-B4 (28,380) | (36,289) | (38,298)
X-B5 (35,456) | (49,317) | (52,331)
X-B6 (41,528) | (62,343) | (68,361)
X-B7 (49, 600) | (79,368) | (87,391)

Table 7: Comparison on depth (i.e., layer count of the network)
and input image resolution of EfficientNet-X model family with
different compound scaling factors designed by LACS and single-
objective compound scaling. Each result contains a pair of "(depth,
input image resolution)". since single-objective compound scaling
only uses accuracy as the sole objective, it does not produce dif-
ferent scaling factors for TPUv3 and GPUv100. The base model
EfficientNet-X-BO0 is also included, which is the same for all cases.

D. Searching and Scaling on Server-class CPUs

Since CPUs still play an important role in the datacenters
for machine learning [24] despite the accelerators being the
new driving force, we also perform NAS on Xeon Platinum
8180 CPUs, a representative server-class machine in data-
centers. As shown in Figure 2, the Xeon Platinum 8180
Skylake CPUs processor still provide a significant amount
of computation (FLOPS as FLOPs/Sec), although TPUs and
GPUs have more than 10X more FLOPS. Computation of
modern CPUs is mostly from the AVX512/AVX?2 instruc-
tion sets [4] running the special vector units, which makes it
possible for CPUs to share similar FLOPs-latency nonpropo-
tionality on CPUs behavior to TPUs and GPUs. On the other
hand, when the AVX512/AVX2 is disabled, CPUs become
scalar machines. A reasonable expectation for such scalar
machines is that they will demonstrate good FLOPs-latency
propotionality, very different from DC accelerators such as
TPUs and GPUs.

Therefore, we perform search and model scaling on the
CPUs with AVX512/AVX2 on and off to thoroughly study
the implications of different hardware architectures. We
use the same search space as described in Section 3 and
Appendix A. Our results find different model families on
CPUs with AVX512/AVX2 on and off. For both with and
without AVX512/AVX2, the searched model architectures
on the Xeon 8180 CPUs use ReLU as the only choice for
activation functions. The main reason for this behavior is
believed to be that CPUs are more sensitive for the increased
FLOPs of swish (swish has 4X more FLOPs than ReLLU),
because of their much lower FLOPS than accelerators.

Concretely, with AVX512/AVX2 turned on, the searched
base model architecture is the same as EfficientNet-X-B0
on GPUs as shown in Table 1. When AVXS512/AVX2 is
turned off, the searched based model architectures is the
same as the original EfficientNet-BO except ReL.U instead
of Swish used for all activation functions. The seemingly
surprising results are actually easy to understand. With
AVX512/AVX2 disabled, the CPUs are essentially scalar ma-
chines and exhibit very good FLOP-latency proportionality,
preferring low FLOPs models to achieve faster speed. Since
EfficientNet is searched using FLOPs as the performance
objective, NAS converges on EfficientNet on CPUs with
AVX512/AVX2 disabled. With AVX512/AVX2 enabled,
the CPUs start to behave more like accelerators, demon-
strating FLOP-latency nonproportionality similar to TPUs
and GPUs and thus preferring models with higher paral-
lelism and efficiency despite higher FLOPs. For scaling
to form the model family, LACS works slightly better on
the CPUs with AVX512/AVX2; while original EfficientNet
compound scaling works slightly better on the CPUs without
AVX512/AVX2 because the CPUs demonstrate strong FLOP-
latency proportionality when turning off AVX512/AVX2.

14

m EfficientNet ®m EfficientNet-X

2.0
15
Q.
=}
®1.0
(0]
Q.
w
0.5
0.0
B0 B1 B2 B3 B4 B5 B6 B7 GM B0 B1 B2 B3 B4 B5 B6 B7 GM
CPU w/o AVX512/AVX2 CPU w AVX512/AVX2

Figure 5: Speedup of EfficientNet-X over the baseline EfficientNet
on CPUs. EfficientNet-X with ReLU (abbrev. EfficientNet-X) is the
preferred model family obtained by search and scaling over Xeon
8180 CPU with AVX512/AVX2 enabled, while EfficientNet with
ReLu (abbrev. EfficientNet) is the preferred model family obtained
by search and scaling on Xeon 8180 CPU with AVX512/AVX2
disabled. Speedup is normalized again EfficientNet on Xeon 8180
CPU with AVXS512/AVX2 disabled at individual model level re-
spectively (thus the speedup of EfficientNet on Xeon 8180 CPU
with AVX512/AVX2 disabled is always one). Models at the same
level achieves similar accuracy. GM is geometric mean.

Figure 5 shows the detailed model inference speed from
BO to B7 level, with models at the same level achieving
similar accuracy as shown in Table 3. EfficientNet-X with
ReLU (abbrev. EfficientNet-X) is the searched model family
on Xeon 8180 CPU with AVX512/AVX?2 enabled, while Ef-
ficientNet with ReLu (abbrev. EfficientNet) is the searched
model family on Xeon 8180 CPU with AVX512/AVX?2
disabled. When AVX512/AVX2 is disabled, the Xeon
8180 CPU demonstrated strong FLOP-latency proportion-
ality, with EfficientNet achieving 45% speedup on aver-
age (geometric mean) with about half FLOPs compared to
EfficientNet-X. One the other hand, when AVX512/AVX2 is
enabled, the Xeon 8180 CPU demonstrated obvious FLOPs-
latency nonproportionality, with EfficientNet-X achieving
16% speedup average despite its 2X FLOPs compared to
EfficientNet. Additionally, when enabling AVX512/AVX2
on the Xeon 8180 CPUs, EfficientNet-X and EfficientNet
achieve 1.8X and 1.5X speedup, respectively.

These results, together with earlier results on TPUs and
GPUs, indicate that the more advanced vector/matrix units a
platform has, the stronger FLOPs-latency nonproportionality
is for the platform. When the platform is a scalar machine,
it has clear FLOPs-latency proportionality. Thus, a general
rule of thumb for selecting performance objective can be
derived as: Latency is a good performance objective for
accelerators with strong matrix/vector unit, while FLOPs
can still be useful as performance objective approximation
for scalar platforms such as some mobile processors without
accelerator units.

