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In this Supplementary Materials, we provide additional
experimental results and ablation studies for further under-
standing of the proposed algorithm and its performance.

A. Performance comparisons based on other back-
bone networks

In the main paper, we have evaluated the performance
of our spatial assembly network (SAN) based on the
GoogleNet backbone network. To demonstrate that this
SAN module can be inserted into different networks to im-
prove their performance, in this section, we evaluate an-
other network, the BN-Inception [3] network, on the CUB
dataset. We include the recent state-of-the-art methods
with BN-Inception for performance comparison. These
methods include: HIL (hierarchical triplet loss) [1], MS
(Multi-Similarity) [9], SoftTriple [8], and XBM (Cross-
Batch Memory) [10]. We use the multi-similarity loss [9]
with momentum memory bank [2, 5] as the baseline system
for our SAN method. From the Table 1, we can see that
the Baseline with SAN has improved the Recall@1 rate by
1.3%.

Table 1. Recall@K (%) performance on the CUB dataset with BN-
Inception in comparison with other supervised metric learning
methods.

Methods CUB
R@1 R@2 R@4 R@8

HTL [1] ECCV18 57.1 68.8 78.7 86.5
MS [9] CVPR19 65.7 77.0 86.3 91.2
SoftTriple [8] CVPR19 65.4 76.4 84.5 90.4
XBM [10] CVPR20 65.8 75.9 84.0 89.9
Baseline 66.3 76.7 85.1 90.8
Baseline with SAN 67.6 77.6 85.5 91.3

B. Sensitivity analysis of hyper-parameters

In (12) of Section 3.3, λ1, λ2, and λ3 are the weighting
parameters. In our experiments, if we change the values of
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λ1 and λ2 between 0.5 and 1, the final Recall@1 rate will
vary by about 0.5%. To address the issue that feature points
from the same object may be disassembled into different lo-
cations in the output feature map, we introduce the local co-
herence into the spatial assembly operation. In this section,
we conduct experiments on different λ3 values to study im-
pact of local coherence. Figure 1 shows the Recall@K per-
formance of our proposed SAN module with different local
coherence weights.

Figure 1. Recall@K (%) performance of SAN module with differ-
ent local coherence (LC) weights on the CUB dataset.

C. Impact of different embedding sizes on super-
vised deep metric learning

In this section, we follow existing supervised metric
learning methods [7, 9, 6] to evaluate the impact of differ-
ent embedding sizes. Table 2 shows the impact of different
embedding sizes on the CUB dataset with GoogleNet. We
can see that the performance gradually improves with the
dimension from 64, 128, 256, 512, to 1024.



Figure 2. Retrieval examples by the baseline with our SAN module on the CUB, Cars, and SOP datasets from unsupervised metric leaning.
The query images and the incorrect retrieved images are highlighted with blue and red.

D. Retrieval examples from unsupervised metric
learning

Figure 2 shows the retrieval examples by the baseline
with our SAN module on the CUB, Cars, and SOP datasets
from unsupervised metric learning. Examples highlighted
with blue and red boxes are query images and incorrect re-
trieval results. We can see that our SAN can learn discrim-
initive features, even image labels are not available.

Table 2. Recall@K (%) performance with GoogleNet on the CUB
dataset in comparison with different embedding sizes.

Embedding Size CUB
R@1 R@2 R@4 R@8

64 58.1 70.3 80.3 88.2
128 60.6 72.5 81.7 88.6
256 62.4 73.6 82.4 89.7
512 63.3 74.5 83.8 90.4
1024 63.5 74.3 83.3 90.2

E. Spatial assembly on the CLEVR compositional
images.

CLEVR is a synthetic dataset developed by [4] for study-
ing compositional languages and elementary visual reason-
ing of spatial relationship between objects. We modify the
CLEVR toolkit [4] to generate synthesized examples. Fig-
ure 3 (left) shows examples from Class 1 and Class 2. We
can see that, within the same class, all images have the same
objects, but with different spatial layout. We perform super-
vised metric learning on these examples. Figure 3 (right)
shows the generated features for Class 1 (blue) and Class
2 (red) being projected into a 1-D space with (bottom) and
without the SAN module (top). We can see that, using the
SAN module, the learned features are much more discrimi-
native.

Figure 3. A synthetic two-class example generated by the CLEVR
toolkit. Left: examples images from Class 1 and Class 2. Right,
the learned features for Class 1 (blue) and Class 2 (red) being pro-
jected into a 1-D space with and without the SAN module.
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