
Surrogate Gradient Field for Latent Space Manipulation
Supplementary Material

Minjun Li* Yanghua Jin* Huachun Zhu
Preferred Networks

{minjunli, jinyh, zhu}@preferred.jp

1. Simple Optimization on Latent Code
In this section, we demonstrate that simple latent code

optimization fails to alter the attributes of a given image.
As the most straightforward method to manipulate the la-
tent space, latent code optimization first calculates the dif-
ference between the current attributes and some desired at-
tributes, and then backpropagates the error to the latent vec-
tor. As we update the latent vector in each step to minimize
the difference, we expect that the optimized result should
possess the desired attributes.

Specifically, we use the following setting for latent code
optimization. Given original latent vector z0, its corre-
sponding attributes c0 and the target attributes c1. We set the
initial value z = z0, and optimize z via back-propagation to
get the result z1 = argminz ||C(G(z))− c1||2. We use the
Adam [4] optimizer with learning rate set to 0.0002.

As shown in Figure 1, latent code optimization unfortu-
nately does not modify the image as expected. We hypothe-
size that the high degree of non-convexity of the composite
function C ◦ G leads to this weird behavior. As a result,
gradient-based optimization easily gets stuck in local op-
tima. A good example of such a local optimum is the face
image in the middle of Figure 1 which C classifies as a fe-
male image.

Another limitation of latent code optimization is that we
need to back-propagate C ◦ G, which may not be possi-
ble. For example, in our Flower-Caption experiments, C is
an image captioner followed by a sentence embedding net-
work. The step of beam search in the caption generation
makes it difficult to back-propagate through C.

Our method does not suffer from the above two limita-
tions. We construct a surrogate gradient field of C ◦ G to
avoid local minima. Also, we evaluate C ◦ G only in the
forward direction, thus avoiding the need to back-propagate
C ◦G.

2. Implementation Details of F
The auxiliary mapping F consists of N layers of con-

ditional linear block, as shown in Figure 2. AdaIN rep-

Figure 1: Latent code optimization fails to change the
gender of the input. Left: The original face as input. Mid-
dle: The result of latent code optimization. We notice that
the classifier predicts this face as female. Right: The result
of our method.

resents adaptive normalization introduced in [1]. We add
a LeakyReLU operation after each AdaIN operation. The
dimension of both hidden features and output features are
512. The length of each latent vector z is 512 in all experi-
ments, while the length of condition c depends on the exper-
imental settings. The length of condition c is 48 in FFHQ-
Attributes and CelebAHQ-Attributes experiments, 120 in
Anime-KeypointsAttr (70 for facial landmarks and 50 for
facial attributes), and 768 in Flowers-Caption.

3. Evaluation Details

Table 1 shows the full attributes list for our facial at-
tributes predictor. The attributes from No.0 to No.18 are
trained using Azure Face API predicted images. The at-
tributes from No.19 to No.47 are trained using CelebA [5]
dataset. We use all attributes in the experiments on FFHQ
and CelebA datasets.

As we mentioned in the main paper, every manipulation
methods have its specific way to control the manipulation
intensity, e.g. adjusting the length of the vector to apply to
control the intensity in InterfaceGAN. Users are required to
fine-tune the strength of movement along the manipulation
path. We find that some methods tend to over-modify the
image when increasing strength related hyper-parameters,
which results in more entangled outputs. These make it dif-
ficult to align the magnitude of editing for each algorithm to

1

AdaIN Linear

Linear

AdaIN Linear

Linear

Conditional
Linear Block

Conditional
Linear Block

Figure 2: The network architecture of the auxiliary map-
ping network F . We use N = 6 blocks for experiments
on Z-Space, N = 15 blocks for experiments on W-Space.
Each conditional linear block contains a fully-connected
layer, followed by a AdaIN and a LeakyReLU activation.
c is used to calculate the parameters of AdaIN.

make them fairly comparable. Thus we design the Manip-
ulation Disentanglement Score as a strength-agnostic met-
ric for comparing the disentanglement of image manipula-
tion algorithms. Table 2 shows detailed evaluation results of
Manipulation Disentanglement Score on “gender” attribute
under the FFHQ-Attributes settings.

4. Additional Results on FFHQ-Attributes
Figure 5 shows the additional results of attributes manip-

ulation in FFHQ-Attributes dataset. The first two rows show
results of editing facial orientation by using different values
of “yaw”. The second two rows show continuous editing
results of “age”. Finally, the last two rows are results of se-
quential editing using SGF. In Figure 6, we also show some
samples used in our user study.

5. Additional Results on CelebAHQ-Attributes
The MDCs of CelebAHQ-Attributes dataset are shown

in Figure 7(a). Green circles highlight the image that has
the highest harmonic mean of accuracy and disentangle-
ment along the curve.

We show more comparisons in Figure 7(b) to illustrate
the effect of different hyper-parameters on the results of
each method. For SGF, the hyper-parameter refers to the
max step number n, while for InterfaceGAN it is the magni-
tude of displacement in the direction of condition. Both can

Table 1: Attributes list for our facial attribute predictor.

No. Attribute
0 Age
1 Gender
2 Smile
3 Glasses
4 Bald
5 Head Roll
6 Head Yaw
7 Head Pitch
8 Beard
9 Moustache

10 Sideburns
11 Happiness
12 Neutral
13 Brown Hair
14 Black Hair
15 Blond Hair
16 Red Hair
17 Gray Hair
18 Other Hair Colors
19 5 o Clock Shadow
20 Arched Eyebrows
21 Attractive
22 Bags Under Eyes
23 Bangs
24 Big Lips
25 Big Nose
26 Blurry
27 Bushy Eyebrows
28 Chubby
29 Double Chin
30 Goatee
31 Heavy Makeup
32 High Cheekbones
33 Mouth Slightly Open
34 Narrow Eyes
35 No Beard
36 Oval Face
37 Pale Skin
38 Pointy Nose
39 Receding Hairline
40 Rosy Cheeks
41 Straight Hair
42 Wavy Hair
43 Wearing Earrings
44 Wearing Hat
45 Wearing Lipstick
46 Wearing Necklace
47 Wearing Necktie

be interpreted as the process of increasing the intensity of
manipulation. Green boxes highlight the results that use the
corresponding highlighted hyper-parameters in Figure 7(a).
As we can see, similar to the results in FFHQ-Attributes,
our method shows higher disentanglement on each attribute,
changing the target attribute while keeping other attributes
intact during the manipulation process.

Figure 7(c) shows the results of continuous attribute ad-
justment. The first row shows results of gradual adjustment

2

Table 2: Calculation of the MDS of “gender” attribute on
FFHQ-Attribute dataset. For each method, we increase
the manipulation strength (total iteration n for SGF, vec-
tor length µ for InterfaceGAN) until the manipulation accu-
racy reaches 1 or accumulated MDS starts to decrease, and
choose the maximum accumulated MDS as the final MDS.

Manipulation Accumulated Harmonic Means of
Method Acc. Disent. MDS Acc. & Disent.
SGF , n = 5 0.18 0.986 0.179 0.304
SGF , n = 10 0.48 0.915 0.464 0.630
SGF , n = 15 0.79 0.890 0.744 0.837
SGF , n = 20 0.93 0.872 0.867 0.900
SGF , n = 25 0.99 0.859 0.919 0.920
SGF , n = 30 0.98 0.842 0.910 0.906
InterfaceGAN , µ = 0.25 0.13 0.993 0.129 0.230
InterfaceGAN , µ = 0.5 0.32 0.942 0.312 0.478
InterfaceGAN , µ = 0.75 0.41 0.883 0.394 0.560
InterfaceGAN , µ = 1.0 0.55 0.822 0.513 0.659
InterfaceGAN , µ = 2.0 0.85 0.612 0.728 0.712
InterfaceGAN , µ = 3.0 0.99 0.469 0.804 0.636
InterfaceGAN , µ = 4.0 1.00 0.398 0.808 0.569

Figure 3: The MDS of ablation study on our method in
the FFHQ-Attributes dataset. (a) The MDC of our abla-
tion study in different latent spaces. (b) The MDC of our
ablation study using different step size λ.

of the yaw attribute, and the following rows show sequential
adjustments of several attributes. For each row, we observe
smooth translation from the original image to the target im-

Figure 4: Comparison on keypoint manipulation results
on Anime-Keypoints and Anime-KeypointsAttr. The
first row shows the manipulation results of SGF conditioned
on keypoints only. The second row shows the results condi-
tioned on both keypoints and attributes. Additional control-
lablilty on attributes (e.g. hair color) ensures that they are
consistent when keypoints change.

age, which facilitates an overall more realistic editing se-
quence.

6. Additional Results on Anime-KeypointsAttr
We found that only using keypoints as the control con-

dition could cause undesired changes in results, as shown
in the first row in Figure 4. Thus the keypoints predic-
tion is concatenated with the first 50 attributes from illus-
tration2vec [6] classifier as the final KeypointsAttr con-
dition for keypoints manipulation experiments. Since the
predicted attributes in KeypointsAttr contain hair color in-
formation, adding these attributes to training conditions can
alleviate the undesired changes in results. For the F trained
with both keypoints and attributes (the second row in Fig-
ure 4), our method successfully maintains the hair color un-
changed after the manipulation, indicating that adding con-
ditioning variables can encourage our method to perform
better disentanglement.

Figure 8 shows additional manipulation results in
Anime-KeypointsAttr dataset. We use our method to edit
the head poses and zoom levels of generated anime faces
(columns two through five). In addition, we show some
sequential editing of zoom level and head poses (last two
columns).

7. Additional Results on Flower-Caption
Figure 10(a) shows additional results of Flower-Caption

experiments using the same configuration as that used in
the paper. Note that unlike Anime-KeypointsAttr experi-
ments, we do not have additional conditioning variables to
keep the shape of the flower unchanged when editing the
color. We limit latent space manipulation to apply on the
top four layers for color manipulations, the bottom four lay-
ers for shape manipulations, while imposing no limitation
for editing that involves changes of both color and shape.

3

Table 3: MDS comparison on FFHQ for ablation study,
evaluated using different step size λ for SGF on Z-space and
W-space of StyleGAN2.

Method Gender Bald Smile Black Hair Overall
SGF Z, λ = 1 0.857 0.519 0.846 0.886 0.777
SGF Z, λ = 0.2 0.901 0.579 0.839 0.909 0.807
SGF Z, λ = 0.02 0.353 0.039 0.258 0.140 0.198
SGF W, λ = 1 0.889 0.587 0.859 0.911 0.812
SGF W, λ = 0.2 0.919 0.590 0.884 0.955 0.837
SGF W, λ = 0.02 0.209 0.125 0.649 0.240 0.306

Figure 10(b) shows the results using the same inputs as Fig-
ure 10(a) without limiting the latent space manipulations to
apply on specific layers in StyleGAN2. We observe that
conditioning on colors using all layers might result in un-
wanted shape changes, and vise versa.

8. Ablation Study

We conduct an ablation study on latent space of GANs
and the step size in our algorithm. Figure 3(a) shows the
MDC of our method in either Z-space or W-space of the
StyleGAN model trained on the FFHQ-Attributes dataset.
Given the same attribute to manipulate, our model performs
better in the W-space of StyleGAN2 [3] than in the Z-space.
This shows that our model can benefit from a more disen-
tangled latent space [2]. Figure 3(b) shows the MDC of our
method using different step size λ. Using a smaller step
size improves accuracy, resulting in a better MDC shape.
However, using step sizes that are too small leads to slow
convergences. Here we omit the MDC of λ = 0.02 and
below because our method under such settings reachs the
maximum iteration with an accuracy lower than 0.3 most of
the time.

In table 3, we report quantitative results of SGF un-
der different hyper-parameter settings on FFHQ-Attributes
dataset. We set the max iteration number n = 50 and ex-
amine performances under different step sizes λ. We find
that decreasing the step size from 1 to 0.2 could result in
a better performance. However, a further decrease to 0.02
significantly slows down the convergences, thus shows infe-
rior results in MDS. We also test performances on Z-space,
we observe performance drop for all step sizes comparing
with W-space. This suggests that our method can benefit
from using a better disentangled latent space.

9. Non-Linear Path of SGF

Compared with previous approaches, our SGF model has
non-linear, position-variant properties when manipulating
latent codes. Figure 9(a) shows the editing path of SGF and
its linear interpolation on mouth keypoints editing. Specifi-
cally, the non-linear results are obtained by setting different

Table 4: Running time of SGF on different datasets
(in sec.). The running time of SGF depends on the re-
estimation step ci = C(G(zi)), using a larger generator and
condition predictor would result in a longer running time.

Method SGF SGF (fast ver.)
FFHQ-Attributes 2.89 0.304
Anime-KeypointsAttr 6.54 0.332
Flower-Captions 11.73 0.366

iteration limit n on SGF, while the linear interpolation is
interpolation on latent space from the starting w0 to final
w′

0 calculated by SGF. We notice that the linear interpola-
tion makes a close approximation to the original non-linear
path.

Applying the “mouth open” direction (w′
0 − w0) to an-

other latent point also achieves similar results to the non-
linear path from SGF, as shown in Figure 9(b). However,
such transferability does not apply to every manipulation.
As shown in Figure 9(c), linearly applying the “eyes closed”
direction obtained from SGF to other latent points generates
results inferior to the original non-linear results. Although
both linear manipulation operations close the eyes of anime
charactors, they also introduce unwanted mouth manipula-
tion (row 3) and unnatural editing (row 4) in the final results.

Overall, we can simplify the control direction obtained
by SGF to linear control without making significant sacri-
fices, and in some cases, such linear direction can be applied
to other samples. To ensure making precise and disentan-
gled modification on given results, however, needs to rely
on the non-linear path of SGF.

10. Running Time of SGF
Table 4 shows the running time (in second) of SGF on

different settings, averaged from 100 samples. The run-
ning time of SGF (i.e., running time of Algorithm 1) largely
depends on the running time of inferencing condition of
new latent code in each step c(i) = C(G(z(i))). We ob-
serve faster running time in FFHQ-Attributes experiments,
which uses a facial attributes classifier that has a much sim-
pler structure compared to the keypoint attribute predictor
in Anime-KeypointsAttr. The C in Flower-Captions con-
sists of an image captioner and a sentence embedding en-
coder, making the overall running time much longer than
other settings.

A trick to save time when running Algorithm 1 is to re-
place the inference step c(i) = C(G(z(i))) by c(i) = iδc
after the first inference. As a result, the Algorithm 1 runs
at approximately a constant 0.4 second, shown as SGF (fast
ver.) in Table 4. This trick would make some scarification
on manipulation performance due to the estimation error of
Auxiliary Mapping F .

4

Figure 5: Additional results on the FFHQ-Attributes dataset. We edit face images generated by GANs in odd rows and
edit real-life images projected to the latent space of GANs in even rows.

Figure 6: Part of the samples used in the user study. The original images in odd columns are generated by GANs while
those in even columns are real-life images projected to the latent space of GANs.

5

Figure 7: Facial attribute editing results in the CelebAHQ-Attributes dataset. (a) The MDC of InterfaceGAN and
our method on several attributes. Green circles highlight the image that has the highest harmonic mean of accuracy and
disentanglement along the curve. (b) Manipulation process of InterfaceGAN and our method. Green boxes highlight the
images with the highest harmonic mean of accuracy and disentanglement during the manipulation. (c) More results of
sequential editing using our method.

6

Figure 8: Keypoints editing on the Anime-KeypointsAttr dataset. Odd rows show the results of our keypoints manipula-
tion and even rows are the corresponding target keypoint conditions.

7

Figure 9: Comparing the non-linear path of SGF and its linear interpolations on Anime-KeypointsAttr dataset. (a)
Comparing the non-linear path of SGF and its linear interpolations. (b) Using the manipulation direction in (a) to control
another latent sample. (c) Use SGF to get the “eye closed” directions, and then exchange the manipulation direction of two
latent samples. Refer to Section 9 for the details.

8

Figure 10: Manipulation by captions in Flowers-Caption dataset. (a) Manipulation results on Flower-Caption dataset.
We limit the latent space manipulation to certain layers when editing either color or shapes, and apply to all layers when
conditioning on both color and shape. The layers used for each manipulation are noted at the bottom of each column. (b)
Manipulation results without layer-wise manipulation in (a).

9

References
[1] Xun Huang and Serge Belongie. Arbitrary style transfer in

real-time with adaptive instance normalization. In Proceed-
ings of ICCV, 2017. 1

[2] Tero Karras, Samuli Laine, and Timo Aila. A style-based gen-
erator architecture for generative adversarial networks. In Pro-
ceedings of CVPR, 2019. 4

[3] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of stylegan. In Proceedings of CVPR, 2020.
4

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Proceedings of ICLR, 2015. 1

[5] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep
learning face attributes in the wild. In Proceedings of ICCV,
2015. 1

[6] Masaki Saito and Yusuke Matsui. Illustration2vec: a seman-
tic vector representation of illustrations. In SIGGRAPH Asia
2015 Technical Briefs. 2015. 3

10

