
Transferable Semantic Augmentation for Domain Adaptation
Supplementary Materials

Shuang Li1 Mixue Xie1 Kaixiong Gong1 Chi Harold Liu1∗ Yulin Wang2 Wei Li3

1Beijing Institute of Technology 2Tsinghua University 3Inceptio Tech.
shuangli@bit.edu.cn michellexie102@gmail.com kxgong@bit.edu.cn liuchi02@gmail.com

wang-yl19@mails.tsinghua.edu.cn liweimcc@gmail.com

This supplementary materials provide the training pro-
cess of Transferable Semantic Augmentation (TSA), the
analysis of memory cost and performance gain, the algo-
rithm for reverse mapping, extra visualization of the aug-
mentation, the necessity stress test of target data and the
visualization of learned features.

1. Training of TSA
In summary, the proposed Transferable Semantic Aug-

mentation (TSA) can be simply implemented and optimized
in an end-to-end deep learning framework through the over-
all objective function:

LTSA = L∞ + βLMI

= − 1

ns

ns∑
i=1

log
eZ

ysi
si∑C

c=1 e
Zc

si

+ β(

C∑
c=1

P̂ c log P̂ c − 1

nt

nt∑
j=1

C∑
c=1

P c
tj logP

c
tj), (1)

where L∞ is our proposed transferable loss and LMI is the
mutual information maximization loss.

The training process of TSA for domain adaptation is
presented in Algorithm 1.

2. Memory Cost and Performance Gain

In Table 1, we analyze the GPU memory cost and perfor-
mance gain of our memory module M. TSA (w/ iterative)
denotes that we employ the iterative manner in [7] to esti-
mate the mean and covariance, while TSA (w/ memory) de-
notes that we estimate the mean and covariance according
to our memory module M. In our experimental settings, the
feature dimensions are set as 256 for Office-31. Compared
to ResNet-50, TSA (w/ memory) obtains a large improve-
ment of 13.2% with negligible extra 0.3GB GPU memory
cost, surpassing TSA (w/ iterative) by 2.8%. This is mainly

∗Corresponding author.

Algorithm 1 Transferable Semantic Augmentation (TSA)
Input: Labeled source domain S = {(xsi, ysi)}ns

i=1, unla-
beled target domain T = {xtj}nt

j=1; maximum iteration
T and batch size B; hyper-parameters: λ0 and β.

Output: Parameters of the final model: ΘF , W and b.
1: Initialize model parameters ΘF , W and b; and initial-

ize memory module M with S and T .
2: for t = 1 to T do
3: λ = (t/T )× λ0 // λ controls augmentation strength
4: Sample {(xsi, ysi)}Bi=1 and {(xtj)}Bj=1 from S and

T , respectively.
5: Obtain deep features {fsi}Bi=1, {ftj}Bj=1 and logit

outputs {ŷsi}Bi=1, {ŷtj}Bj=1 for source and target
samples, respectively.

6: Compute probabilistic outputs of target samples:
{P tj = softmax(ŷtj)}Bj=1 and generate target
pseudo labels: {y′tj = argmaxc P

c
tj}Bj=1 .

7: Update memory module M with features and pseudo
labels in current batch t.

8: for each class c do
9: Estimate features means µc

s and µc
t according to

memory module M.
10: Estimate inter-domain mean difference ∆µc =

µc
t − µc

s .
11: Estimate the target intra-class covariance matrix

Σc
t according to memory module M.

12: end for
13: Update ΘF , W and b by minimizing the loss LTSA

in Eq (1) with stochastic gradient descent (SGD).
14: end for

Table 1. GPU memory cost on Office-31 with batch-size 32.
Method GPU Memory (GB) Accuracy (%) Gain (%)

ResNet-50 7.2 76.1 -
TSA (w/ iterative) 7.3 86.5 10.4 ↑
TSA (w/ memory) 7.5 89.3 13.2 ↑



Noises	𝑧

Generator 𝐺

Fake Images 𝐺(𝑧)

Real Image 𝑥𝑖

Extractor 𝑓

𝑓(𝐺(𝑧))
𝑓(𝑥()

Augment
𝑓(𝑥() )*+

Figure 1. Outline of the reverse mapping algorithm. Generator G is to generate fake images visually similar to source domain, while
extractor F is to extract the features of fake and source images. We use the two modules to search images in the pixel space corresponding
to the augmented features in the deep feature space.

due to the fact that the iterative manner will bias the estima-
tion of expected mean and covariance, due to its accumu-
lation property. Besides, it is noteworthy that the memory
module is not required in the inference phase.

Iterative Estimation Manner. Here, we elaborate the
iterative manner of updating mean and covariance. To esti-
mate the covariance matrix of features, ISDA [7] proposes
an iterative manner by integrating covariances of batches
from first to current batch. For class c, the iterative estima-
tion manner is formulated as:

ηic =
Bi

c

N
(i−1)
c +Bi

c

, (2)

µ(i)
c = (1− ηic)µ(i−1)

c + ηicµ
′i
c, (3)

Σ(i)
c = (1− ηic)Σ

(i−1)
c + ηicΣ

′i
c

+ ηic(1− ηic)(µ(i−1)
c − µ′i

c)(µ
(i−1)
c − µ′i

c)
>, (4)

where N (i−1)
c is the total number of training samples for

class c in all previous (i− 1) batches, and Bi
c is the number

of training samples belonging to class c in current batch i.
ηic is the proportion of samples of class c in current batch i to
samples of class c in all previous (i−1) batches. µ(i−1)

c and
µ′i

c are the averages of features for class c in all previous
(i − 1) batches and current batch i, respectively. Σ(i−1)

c

and Σ′i
c are the covariances of features for class c in all

previous (i− 1) batches and current batch i, respectively.

However, the weight distribution of network in early
training stage will vastly differ from that in latter training
stage. Thus, due to its accumulation property, such iterative
manner might cause out-of-date features to bias the estima-
tion of expected covariance matrix. By contrast, our mem-
ory module will discard the out-of-date batch and replace
with the latest batch, conductive to more accurate estima-
tions of mean and covariance.

3. Reverse Mapping Algorithm

To intuitively display how TSA generates the meaningful
semantic transformations of source images, inspired by [7],
we design a reverse mapping algorithm to generate images
in the pixel-level space corresponding to the augmented fea-
tures in the deep feature space.

The outline of the reverse mapping algorithm is shown in
Fig. 1. There are two modules involved in this algorithm:
1) GANs-based generatorG and 2) CNNs-based feature ex-
tractor F . Here, the generator G is pre-trained on a source
dataset to generate fake images that are close to source do-
main, while feature extractor F is pre-trained on an adapta-
tion task to extract the features of fake and source images.
Taking the adaptation task SVHN→MNIST as an exam-
ple, G is pre-trained on dataset SVHN, and F is pre-trained
on task SVHN→MNIST. After the two modules are well
trained separately, we freeze them during following phases.

Formally, let z ∈ Rd denote the random noise variable
and xs denote the source image randomly sampled from
a source domain, such as SVHN. At first, noise z is fed
into generatorG to synthesize fake imageG(z). Then, fake
image G(z) and source image xs are input to the feature
extractor F to obtain deep features F (G(z)) and F (xs),
respectively. For achieving reliable visualization results, we
first find the noise z′ corresponding to source image xs by
solving the following optimization problem:

z′ = argmin
z
‖F (G(z))− F (xs)‖22 + α‖G(z)− xs‖22, (5)

where α is a trade-off parameter to balance the contributions
of two parts. We use the mean square error to constrain
noise z in both feature and pixel levels to obtain a reliable
initial point z′ for the following procedure.

After yielding the initial point z′, we augment the origi-
nal source feature F (xs) with TSA, forming the augmented
feature Faug(xs). Then we initialize z with z′ to continue
to search the optimal noise z∗ corresponding to the aug-



Source Augmented Source Target Source Augmented Source Target

Source Augmented Source Target Source Augmented Source Target

Figure 2. Extra visualizations of semantically augmented images for task SVHN→MNIST. “Source” and “Augmented Source” columns
present the images from SVHN and their corresponding augmented images synthesized by TSA, respectively. “Target” column provides
several images representing corresponding classes from MNIST.

mented feature Faug(xs):

z∗ = argmin
z
‖F (G(z))− Faug(xs)‖22. (6)

When Eq (6) is optimized, the desired z∗ can be obtained.
Consequently, the image G(z∗) generated by G should
be the appropriate visualization for the corresponding aug-
mented source feature.

Implemented Details. We adopt the structure of
WGAN-GP [2] for the generator G. The architecture of
feature extractor F is based on the chosen task, e.g., we use
the feature extractor of task SVHN→MNIST as [6, 3]. We
also adopt SGD optimizer with momentum 0.9 to optimize
the reverse mapping algorithm. The dimension d of noise
variable is set to be 128.

Extra Visualization Results of Augmentation. We
adopt the aforementioned reverse mapping algorithm to
produce more visualization results for augmented source
features, which are shown in Fig. 2. The results further
prove that TSA is indeed able to generate diverse, mean-
ingful and even target-specific augmented features, which
will facilitate adapting the classifier from source to target
domain successfully.

4. Necessity Stress Test of Target Data
For reducing the training burden in practice, we test

how much target data is necessary to achieve desirable

Table 2. Necessity stress test of target data on Office-31.
Method ρ A→W D→W W→D A→D D→A W→A Avg

ResNet-50
+

TSA

0% 68.4 96.7 99.3 68.9 62.5 60.7 76.1
20% 82.4 97.4 99.5 81.5 66.4 64.8 82.0
40% 90.2 98.4 99.8 88.5 70.5 69.7 86.2
60% 93.2 98.8 100.0 91.7 73.4 73.0 88.4
80% 94.3 98.8 100.0 92.4 74.8 74.2 89.1
100% 94.8 99.1 100.0 92.6 74.9 74.4 89.3

performance of TSA by varying the amount of target
data participated in the training. Specifically, for each
class, we randomly sample a proportion (ρ) of target
data as training samples along with the original source
dataset, and use the entire target dataset for evaluating.
The results of ResNet-50+TSA on Office-31 under ρ ∈
{0%, 20%, 40%, 60%, 80%, 100%} are shown in Table 2,
where we can see that when target data increases, higher
accuracies are obtained. This is because more accurate and
comprehensive semantics can be captured with more target
data. Besides, the performances of ρ = 80% and ρ = 100%
are comparable, which motivates us to reduce target data
in training to save computation and memory cost for large-
scale target datasets.

5. Visualization of Features
Though TSA strives to adapt classifiers from source do-

main to target domain, we surprisingly notice that TSA can



(d) CDAN + TSA

(b) DANN + TSA

(c) CDAN

(a) DANN

Figure 3. Visualization of the features learned by DANN,
DANN+TSA, CDAN and CDAN+TSA on task A→W (Office-
31). Blue and red dots stand for the source features and the target
features, respectively.

also empower DA methods to learn more transferable fea-
ture representations. We adopt t-SNE tool [5] to visualize
the features learned by DANN [1], DANN+TSA, CDAN
[4], and CDAN+TSA on task A→W (Office-31) in Fig.
3. From results we observe that DANN and CDAN can-
not align both domains perfectly, due to the mismatching
of several classes. After applying TSA, the representations
are more indistinguishable between two domains and the
class boundaries are sharper, validating that TSA facilitates
learning more transferable and discriminative features be-
sides the effective classifier adaptation.

References
[1] Yaroslav Ganin and Victor S. Lempitsky. Unsupervised do-

main adaptation by backpropagation. In ICML, pages 1180–
1189, 2015. 4

[2] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron Courville. Improved training of wasser-
stein gans. In NeurIPS, pages 5769–5779, 2017. 3

[3] Shuang Li, Chi Harold Liu, Binhui Xie, Limin Su, Zhengming
Ding, and Gao Huang. Joint adversarial domain adaptation. In
ACM MM, pages 729–737. ACM, 2019. 3

[4] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I
Jordan. Conditional adversarial domain adaptation. In
NeurIPS, pages 1647–1657, 2018. 4

[5] Laurens van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. JMLR, 9(Nov):2579–2605, 2008. 4

[6] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tat-
suya Harada. Maximum classifier discrepancy for unsuper-
vised domain adaptation. In CVPR, pages 3723–3732, 2018.
3

[7] Yulin Wang, Xuran Pan, Shiji Song, Honghua Zhang, Cheng
Wu, and Gao Huang. Implicit semantic data augmentation for
deep networks. In NeurIPS, pages 12614–12623, 2019. 1, 2


