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Figure 1: The effects of different numbers of flow blocks and FCN
depths on negative log-likelihood (NLL) of kernels.

1. Ablation Study on FKP

To evaluate the effects of the total number of flow blocks
and fully-connected network (FCN) depths in FKP, we gen-
erate a testing set by sampling kernels with a kernel width
step of 0.3 and rotation angle step of 0.2. We compare dif-
ferent parameter settings by the average NLL of the last
epoch on the testing set as the NLL loss used in train-
ing reflects the kernel modeling likelihood. It can be ob-
served from Fig. 1(a) that NLL has a decreasing tendency
with the number of flow blocks, indicating that more flow
blocks generally improve the modeling ability of FKP. From
Fig. 1(b), one can see that too shallow or too deep FCN lead
to performance drop, maybe due to under-fitting or over-
fitting, respectively. As a result, to balance kernel modeling
performance and computation cost, we use 5 flow blocks
and 3 fully-connected layers in FKP.

2. Kernel Estimation Under Ideal Circum-
stance

As a kernel prior, FKP can generate a kernel under the
guidance of kernel estimation loss functions. To show how
FKP works, we use the mean absolute error (MAE) between
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Figure 2: The intermediate results of kernel estimation under the
guidance of an ideal kernel reconstruction loss. The PSNR of ker-
nel is shown below each kernel estimation.

kernel estimation and the ground-truth as an ideal kernel es-
timation loss. As shown in Figure 2, FKP converges quickly
and is able to generate kernels accurately in 20 iterations
even though the kernel initialization is far from the ground-
truth. When we optimize it for more iterations, there are
further improvements in accuracy. It is noteworthy that, in
this specific case, we can also input the ground-truth kernel
into FKP in order to obtain the corresponding latent vari-
able as FKP is a bijection, though it is not applicable in the
kernel estimation problem.

3. More Visual Comparisons

We provide more visual comparisons to show the supe-
riority of the proposed DIP-FKP and KernelGAN-FKP, as
shown in Fig. 3 and Fig. 4.
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Figure 3: More visual results of different methods on synthetic and real-world images for scale factor 4. Estimated/ground-truth kernels
are shown on the top right of images.
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Figure 4: More visual results of different methods on synthetic and real-world images for scale factor 4. Estimated/ground-truth kernels
are shown on the top right of images.
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