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1. More Ablations
1.1. Risk Threshold

The risk threshold C in online annotation determines how fast the annotation process converges and possibly affects the
final label quality. In Fig.1, we find that using a lower risk threshold stably results in stable label quality improvement. For
larger risk threshold, some incorrectly annotated data can be considered confident in the early stage, resulting in unstable
label quality improvement. It is somewhat surprising that varying the risk threshold does not affect the final label quality a
lot. We set C = 0.1 for all other experiments in this paper.
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Figure 1: Ablation of different risk thresholds. Having lower risk threshold results in slower convergence, and improved
final label quality.

1.2. Number of Workers

We explore how the number of workers affects annotation efficiency. In Fig.2, we find that having a fewer number of
workers results in better label quality due to the better worker skills estimation, especially in the fine-grained dataset where
the worker skills estimation matters more.

1.3. Model Update Frequency

In reality, we need to consider the frequency of updating the model and collecting human labels, and the latency of model
updates varies across applications. In Fig.3, we find that having lower update frequencies (higher number of annotations per
update) tends to overshoot in the number of annotations, while the method is robust to low update frequency.

1.4. Worker Prior Changes

There are multiple ways to design a better prior. Here, we discuss two possible ways: A) Considering class identity and B)
Considering worker identity. To consider the class identity, the task designer needs to have a clear thought of which classes
are harder. To consider the worker identity, the task designer needs to ask several gold standard questions to each worker. In
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Figure 2: Ablation of different numbers of workers. Lower number of workers usually results in greater annotation quality
but does not necessarily improve efficiency.
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Figure 3: Ablation of different numbers of labels per step. Models that collect more labels per step tends to overhoot in
number of annotations, while the final label quality remains similar.

Fig 4, we ablate the choice of having None, A, B, and A+B with prior strength 10. For the fine-grained datasets, considering
worker identity in the prior improves a lot since the worker skills can vary significantly. For the coarse-grained datasets, the
improvement is marginal. For all other experiments in this paper, we adopt None.

In reality, we need to consider the frequency of updating the model and collecting human labels, and the latency of model
updates varies across applications. In Fig.3, we find that having lower update frequencies (higher number of annotations per
update) tends to overshoot in the number of annotations, while the method is robust to low update frequency.
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Figure 4: Ablation of different priors. For fine-grained dataset, considering worker identity in the prior improves a lot since
the worker skills can vary a lot. However, having better prior does not necessarily lead to better performance.
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1.5. Task Assignment

To verify if the learnt worker skills help with task assignment, we propose a simple greedy algorithm. For an image
sampled for annotation from the unfinished set U , we use ȳi to find the best possible workers from the workers pool using
the currently estimated worker skill, with a cap on the maximum number of annotations α allowed per worker.

j ← arg max
j∈Ŵ

Ey∼ȳiw̄j [y, y], Ŵ = {j||Zj | ≤ α} (1)

The worker importance is measured by a weighted sum of the worker’s per-class reliability and the number of annotations
assigned to the worker. The weights are inversely proportional to the model’s per-class accuracy. Ideally, number worker
annotations would be highly correlated with worker importance. In Fig. 5, we show the results on different splits .
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Figure 5: Task Assignment. The learnt skills consistently increase the annotation efficiency.

2. Transfer to Human Workers

To validate if the proposed approach can gracefully transfer to human workers, we further collect 2519 annotations of
1657 images from Insesct+Fungus. We perform data annotation from 11 workers on Toronto Annotation Suite. The average
annotation accuracy is 0.908. For the experiments, we include 13000 additional images as unlabeled data for semi-supervised
learning. Other details remain the same.

3. Data in the Unfinished Set

For all the experiments, we suggest performing early stopping and leave the rest of the unfinished set {xi|R(ȳi > C)} to
a separate process, possibly expert annotators. We show the normalized number of images in the unfinished set in Fig. 6. For
coarse-grained datasets, there are almost no images left in the unfinished set, while in fine-grained datasets, e.g. Dog, there
can be as many as 31% of images left in the unfinished set.

3.1. Precision of the Finished Set

In the main paper, we show the overall label accuracy. Here, we are interested in the precision of the finished set. In
Fig 7, we measure the precision of the finished set of different methods and our proposed framework. In the Dog, the overall
accuracy is 75.9%, while the precision of the finished set is 86.4%. The finished set size is 15598, i.e. we have 13368 correctly
labeled images out of 22704 images in the finished set.

4. Top 5 in ImageNet100

The images in ImageNet can have multiple objects, making top1 accuracy unreliable. In Fig. 8, we show the comparison
in terms of top5 accuracy. Our proposed approach still performs slightly better than its counterparts. Note that the top5
accuracy is more error-tolerant, making the improvement gap smaller.
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Figure 6: Normalized number of images in the unfinished set.
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Figure 7: The precision of the finished set of images.
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Figure 8: Top1 and top5 label accuracy on ImageNet100.

5. Implementation Details

For each experiment, the learning rate is λ ∗ BatchSize, where λ is the learning rate ratio. Regarding the worker prior,
we follow previous work [1] to use a tiered prior system. Ignoring the worker identity, we use a homogeneous prior i.e. we
ignore both worker identity and class identity. If gold standard questions are used, one can use a more sophisticated prior.
We show the ablation of using different prior in Sec. 1.4. Each worker reliability is represented as a confusion matrix over
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Parameter Search Values
λ 0.001, 0.0005, 0.0001, 0.00005
weight decay 0.001, 0.005, 0.0005, 0.0001
µ 3, 5, 10
γ 50, 75, 100, 150

Table 1: The search range of the hyperparameters.

the label set. We assume a worker annotation z given y = k is a Dirichlet distribution Dir(nβαk), where nβ is the strength
of the prior and αk is estimated by pooling across all workers and classes. We set αk = 0.7 and nβ = 10 for all experiments.

We perform hyperparameters search on learning rate ratio, weight decay ratio. For mixmatch, we perform an additional
search over µ, and γ. In Tab. 1, we show the search range of these hyperparameters.

6. Crowdsourcing on AMT
Prior work [2, 3] simulate workers as confusion matrices, and the class confusions are modeled with symmetric uniform

noise, which can result in over-optimistic performance estimates. Human annotators usually exhibit asymmetric and struc-
tured confusion. We thus crowdsource the confusion matrices from human workers for the simulation. Fig. 9a, shows our
user interface on Amazon Mechanical Turk (AMT) for crowdsourcing.

(a) The user interface on AMT for crowdsourcing.
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(b) Average confusion matrix of all workers on the ImageNet-100
dataset

6.1. Workers Exhibit Structured Noise

We show the crowdsourced confusion matrices for different splits in Fig. 10. For coarse-grained datasets, e.g. Commodity,
there is low confusion, while in fine-grained datasets (Rest), the confusions are strong and correlated to class identities. In
Fig. 9b, we also show the average confusion matrix of all the workers on ImageNet100.

7. Simulating Workers
Here, we show the Python implementation to sample the simulated workers used in our experiments in Listing 1.

1 import numpy as np
2

3 def sample_confusion_matrix(smooth_ratio: float, noise_level: float, target_classes: list, imagenet100:
list, group: list, group_workers: dict):

4

5 cm = []
6 for k, v in group_workers.items():
7 v = np.array(v)
8 global_v = v.sum(0)
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Figure 10: The confusion matrix ImageNet100 splits. We can see that the label confusion is neither unifom nor symmetric.

9 idx = self.npr.choice(range(len(v)), 1)
10 cm.append(smooth_ratio * global_v + v[idx])
11 cm = sum(cm) # (100, 100) np.ndarray
12

13 idx_to_keep = np.array([imagenet100.index(c.lower()) for c in target_classes])
14 cm = cm[idx_to_keep, :][:, idx_to_keep]
15 cm = cm / (cm.sum(1, keepdims=True) + 1e-8)
16

17 def __which_group(i):
18 for g_idx, g in enumerate(groups):
19 if i in g:
20 return g_idx
21

22

23 # Add uniform noise in off-diagonal terms
24 for i, c_i in enumerate(target_classes):
25 c_i_group = __which_group(c_i)
26 same_group_mask = np.zeros(cm.shape[0]).astype(np.bool)
27 same_group_mask[i] = True
28 for j, c_j in enumerate(target_classes):
29 if i != j and c_i_group == __which_group(c_j):
30 same_group_mask[j] = True
31

32 if same_group_mask.sum() > 0:
33 density_to_spread = cm[i, same_group_mask].sum()
34 cm[i, same_group_mask] = cm[i, same_group_mask] * (1 - noise_level)
35 cm[i, ˜same_group_mask] += density_to_spread * (noise_level) / max(sum(˜same_group_mask), 1e

-8)
36

37 return cm

Listing 1: Worker Simulation Code

8. Semi-Supervised Learning: MixMatch

MixMatch constructs virtual training examples by mixing the labeled, and unlabeled data using a modified version of
MixUp [6]. We modify MixMatch for online annotation, where the input to the model being learnt is the feature vector
φ(x). The labeled set is defined by the data points with at least one worker annotation {xi||Wi| > 0}, and the unlabeled
set is defined by the data points whose largest probability is larger than a predefined threshold and is not in the labeled set,
{xi|p(ȳi|Zi) > 1− τ&|Wi| = 0}. We use the same threshold as the one used in pseudo labels. The mixmatch loss consists
of cross entropy of the labeled set and the l2 minimization of the mixed set. The mixed set is constructed by sampling (x1, p1)
from the labeled set and (x2, p2) from the unlabeled set and interpolate both input and output.

6



λ ∼ Beta(α, α)

λ′ = max(λ, 1− λ)

x′ = λ′x1 + (1− λ′)x2

p′ = λ′p1 + (1− λ′)p2

Smixed ← (x′, p′)

L = E(x,y)∼{xi,ȳi||Wi|>0}H(ȳi, p(y|φ(xi), θ))

+ µE(xi,pi)∼Smixed ‖pi − p(y|φ(xi), θ)‖22

(2)

where µ is the hyperparameters. When the labeled set is small, we usually sample γ times more data from the unlabeled set.
In our experiments, µ and γ are set by performing hyperparameters search mentioned in the main paper.

9. Unexplored Questions
We discuss shortcomings and additional directions for progress in this section.
Using multiple ML models as workers: Different self-supervised pretext tasks can provide orthogonal benefits for

downstream tasks [4]. Downstream labeling tasks could go beyond semantic classes, such as annotating the viewing angle
of a car in an image as a classification problem. One could imagine a scenario where classifiers trained on multiple self-
supervised features are treated as machine “workers”, whose skills for the task at hand are simultaneously estimated, similar
to those for human workers.

Annotating at a small scale / beyond ImageNet: We do not discuss annotating small-scale data and restrict ourselves
to ImageNet in this work. When the target dataset is small, we expect to be able to finetune self-supervised features on it to
initialize the feature extractor φ.

Leveraging label hierarchies: [5] propose a method to utilize label hierarchies to efficiently factorize large confusion
matrices used to represent worker skills. We expect to see additional benefits from incorporating their skill estimation method
into our algorithm.

Simulating Image Difficulty: Our proposed simulation does not account for image-level annotation difficulty, and sim-
ulated labels are obtained using a realistic confusion matrix applied to the ground truth label. Improving our simulation to
consider this is something we would like to explore in future work.

Going beyond classification: The proposed method can be used to go beyond classification by changing the likelihood
modeling for human annotations. In this vein, [1] show results on keypoint and bounding box annotation. Incorporating
learning into the loop requires specific attention to detail per task, and we leave this to future work.

10. Class Names in Each Subtask
Tab. 2, shows the classes that comprise each subset in our ImageNet-sandbox dataset.

10.1. More Qualitative Results on ImageNet100

In Fig. 11, we show randomly sampled images from the unfinished set. Most of them are images with a fine-grained label,
e.g. Fiddler Crab, Great Dane, Borzoi, etc, and some of them are shot from unusual angles, e.g. Chime and Basinet. We
also show additional random examples with zero, one, two and three annotations in our ImageNet100 experiment in Fig. 12,
Fig. 13, Fig. 14 and Fig. 15 respectively.
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Dataset Class Names
Dog Komondor, Mexican Hairless, Vizsla, Hungarian Pointer, Toy Terrier, Papillon, Boxer, Rottweiler,

English Foxhound, Chihuahua, Shih-Tzu, Chesapeake Bay Retriever, Saluki, Gazelle Hound, Walker
Hound, Walker Foxhound, Borzoi, Russian Wolfhound, Standard Poodle, Kuvasz, American Stafford-
shire Terrier, Staffordshire Terrier, American Pit Bull Terrier, Pit Bull Terrier, Doberman, Doberman
Pinscher, Great Dane

Vertebrate Meerkat, Mierkat, Hare, Robin, American Robin, Turdus Migratorius, Little Blue Heron, Egretta
Caerulea, Tabby, Tabby Cat, Goose, Langur, Wild Boar, Boar, Sus Scrofa, Lorikeet, Garter Snake,
Grass Snake, African Hunting Dog, Hyena Dog, Cape Hunting Dog, Lycaon Pictus, Gibbon, Hylo-
bates Lar, Coyote, Prairie Wolf, Brush Wolf, Canis Latrans, Hognose Snake, Puff Adder, Sand Viper,
American Coot, Marsh Hen, Mud Hen, Water Hen, Fulica Americana, Green Mamba, Gila Monster,
Heloderma Suspectum, Red Fox, Vulpes Vulpes

Insect + Fungus Gyromitra, Cauliflower, Fiddler Crab, Dung Beetle, Head Cabbage, American Lobster, Northern Lob-
ster, Maine Lobster, Homarus Americanus, Stinkhorn, Carrion Fungus, Leafhopper, Rock Crab, Can-
cer Irroratus, Garden Spider, Aranea Diademata, Carbonara, Walking Stick, Walkingstick, Stick Insect,
Chocolate Sauce, Chocolate Syrup

Commodity Vacuum, Vacuum Cleaner, Computer Keyboard, Keypad, Bottlecap, Milk Can, Iron, Smoothing Iron,
Mortarboard, Bonnet, Poke Bonnet, Sarong, Modem, Tub, Vat, Purse, Cocktail Shaker, Rotisserie,
Jean, Blue Jean, Denim, Dutch Oven, Football Helmet

ImageNet20 Robin, American Robin, Turdus Migratorius, Gila Monster, Heloderma Suspectum, Hognose Snake,
Puff Adder, Sand Viper, Garter Snake, Grass Snake, Green Mamba, Garden Spider, Aranea Diademata,
Lorikeet, Goose, Rock Crab, Cancer Irroratus, Fiddler Crab, American Lobster, Northern Lobster,
Maine Lobster, Homarus Americanus, Little Blue Heron, Egretta Caerulea, American Coot, Marsh
Hen, Mud Hen, Water Hen, Fulica Americana, Chihuahua, Shih-Tzu, Papillon, Toy Terrier, Walker
Hound, Walker Foxhound, English Foxhound, Borzoi, Russian Wolfhound

Table 2: Class names used in each split.

Fiddler Crab Walker Hound Reel Park Bench Rocking Chair Great Dane

American Lobster Cauliflower
American

Staffordshire
Terrier

Borzoi Laptop Bassinet

Chime American Lobster Reel Chihuahua
American

Staffordshire
Terrier

Milk Can

Figure 11: Images in the unfinished set on ImageNet100
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Kuvasz Chocolate Sauce Theater Curtain Lampshade Mortarboard Tabby

Mortarboard Rock Crab English Foxhound Garter Snake Gasmask Kuvasz

Head Cabbage Computer
Keyboard Theater Curtain Honeycomb Carbonara Wing

Figure 12: Images with no annotations on ImageNet100

Boathouse Head Cabbage Safety Pin Iron Bannister Tile Roof

Cinema Modem Football Helmet
American

Staffordshire
Terrier

Papillon Cinema

Gibbon Sarong Doberman Pickup Bonnet Gibbon

Figure 13: Images with 1 annotation on ImageNet100
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Cinema Chesapeake Bay
Retriever

American
Staffordshire

Terrier
Ambulance Great Dane Pirate

Boathouse Bannister Harmonica Pineapple Stretcher Rock Crab

African Hunting
Dog Boxer Sarong Rocking Chair Mixing Bowl Window Screen

Figure 14: Images with 2 annotations on ImageNet100

Jean Komondor Harmonica Bottlecap
American

Staffordshire
Terrier

English Foxhound

Vizsla Football Helmet Walker Hound American Coot
American

Staffordshire
Terrier

American Lobster

Harmonica Saluki Pickup Walker Hound Moped Rock Crab

Figure 15: Images with 3 annotations on ImageNet100
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