
Shape and Material Capture at Home: Supplementary Material

Daniel Lichy1 Jiaye Wu1 Soumyadip Sengupta2 David W. Jacobs1
1University of Maryland, College Park 2University of Washington

dlichy@umd.edu, jiayewu@umiacs.umd.edu, soumya91@cs.washington.edu, djacobs@cs.umd.edu

Contents

1. Overview

2. Video

3. BRDF Model

4. Synthetic Data Generation and Augmentation
4.1. Random BRDF Generation
4.2. Scene Generation
4.3. Training Time Augmentation

5. Network Architectures
5.1. Notation
5.2. InitNet .
5.3. RecNet .
5.4. ResNet for Ablation

6. SDPS-Net Retraining

7. Integrating Normal Maps

8. Comparison to SDPSNet (2 Image)

9. Results on Li’s Data

10. More Results on Our Data

1. Overview
In this supplemental material, we provide additional de-

tails and results on our method that could not be included in
the paper due to space constraints. For the topics covered
herein, please refer to the table of contents.

More Results in Video: 10304 supp video.mp4

2. Video
We have included a video (10304 supp video.mp4) with

this supplementary material containing additional results
and comparisons. In the video, we show the meshes recon-
structed by our method with three input images and those
reconstructed by SDPS-Net [3] retrained with three images.

We also show the meshes reconstructed with our method us-
ing one image compared to those of Li’18 [6]. The meshes
are show undergoing a rotation and being relit.

In the left column, meshes are rendered with just their
diffuse albedo. In the middle column, they are rendered
with a uniform diffuse albedo, and in the right column, they
are rendered with their full estimated BRDF. Since SDPS-
Net does not estimate BRDF for the diffuse and specular
renderings we use a generic purple BRDF.

3. BRDF Model
We define SV-BRDF using the Cook-Torrance model

[4], where the BRDF B(V,L) is a 4D function of view-
ing direction V and lighting direction L. N is the sur-
face normal, H is the halfway vector of V and L, θX is
arccos(X ·N), A is the albedo and R is the roughness. The
model is then defined by the equations:

B(V,L) =
A

π
+
F (H,V)D(H,N)G(H,L, V)

4(N · L)(N · V)
. (1)

D(H,N) =
1

πR2 cos4(H ·N)
e

− tan2(H·N)

α2 . (2)

F (H,V) = F0 + (1− F0)(1− (H · V))5 (3)

a(X) =
1

R tan θX
(4)

G1(X,H) =

1 if a > 1.6
0 if (H ·X)(X ·N) ≤ 0

3.535a(X)+2.181
√

a(X)

1+2.276a(X)+2.577
√

a(X)
otherwise

(5)

G(H,L, V) = G1(L,H)G1(V,H) (6)

F (H,V) is the Schlick approximation to the Fresnel
term, G(H,L, V) is Smith’s masking-shadowing function

with fast rational function approximation [8], andD(H,N)
is the Beckmann distribution. We fix the Fresnel-Schlick
F0 value at 0.05 as done by [6]. Thus BRDF can be
parametrized with albedo A and roughness map R.

4. Synthetic Data Generation and Augmenta-
tion

4.1. Random BRDF Generation

For spatially varying albedo we gathered 415 free tex-
tures from [1], which we divided into train and test sets with
a 90-10 split. We augment these albedos, at render time, by
multiplying each channel by a random Gaussian variable
with mean 1 and standard deviation 0.2.

For generating roughnesses, we take a similar approach
to [7]. In [7] they randomly sample Phong exponents uni-
formly from the bins 0–10, 10–20, 20–40, 40–80, 80–160,
160–320, 320–640,640–2560. We approximate this by sam-
pling from an exponential distribution with median 80. We
then convert the sampled Phong exponent to a Beckmann

equivalent roughness, R, with the formula R =
√

2
2+E ,

where E is the Phong exponent as suggested by [5].
We found that the Fresnel term does not make a large

difference in appearance visually, so to simplify things we
fix F0 = 0.05 as done by [6].

4.2. Scene Generation

We create two synthetic datasets to train our model. The
data generation procedure is the same for both datasets, the
difference being that the first dataset uses random geometry
generated by [10] and the second uses realistic geometry
from the sculptures dataset [9]. The first dataset has 20,000
training scenes and 500 test scenes. The second has 10,000
training scenes and 200 test scenes.

The scene layout consists of a rectangle in the x-z plane
to represent a floor and either a shape randomly selected
from the 5000 shapes generated by [10], which are com-
posed of 1-9 primitives, or a shape from the sculpture
dataset. Each primitive, including the floor, is assigned a
random BRDF using the procedure described above. An or-
thographic camera is placed in the y-z plane, pointing at the
shape and making an angle with the floor that is randomly
sampled between 10◦ and 45◦.

The scene is rendered with six directional lights with unit
intensity. The right, front-right, front-left and left lights are
first placed with azimuth angles -90◦,-45◦,45◦,90◦ and ele-
vations of 25◦ above the floor. They are then perturbed in
both the azimuth and elevation randomly by up to 10◦. The
overhead light is placed with random elevation between 80◦

and 90◦ above the floor and random azimuth between 0◦

and 360◦. The co-directional light is simply placed along
the camera optical axis.

Scenes are rendered with Mitsuba2’s [8] Path-Tracer at
256 samples per pixel in HDR. Our BRDF implementation
is a Mitsuba2 port of Boss’s Mitsuba1 code [2].

4.3. Training Time Augmentation

At training time images undergo one of two possible size
transforms. With probability 0.7 they are randomly cropped
to between 70% and 100% of their initial size and resized
back to 256×256, and with probability 0.3 they are ran-
domly resized to between 60% and 100% of their initial
size. They are then padded with zeros back to a size of
256×256. We performed this procedure so that the network
will see the same features at various scales.

We simulate intensity variations by randomly scaling
each linear image to have a median selected randomly be-
tween 0.01 and 0.2. The images are then sRGB tonemapped
and clamped between 0 and 1 before being fed to the net-
work. We found this gives the images intensity variations
fairly similar to those observed in natural images.

5. Network Architectures
5.1. Notation

To describe the network architectures used in this paper
we first define some notation:

• A-B := apply layer A then apply layer B

• BN := batch norm

• Relu := relu activation

• conv kn fm sp := convolution layer with kernel of size
n and m filters (i.e. output channels) and stride p. If
stride is 1 we will omit s1.

• convt kn fm sp := transposed convolution layer with
kernel of size n and m filters (i.e. output channels) and
stride p.

• Res n := conv k3 fn - BN - Relu - conv k3 fn - BN -
+input. This defines the residual block. +input indi-
cates adding the input value to the output value.

5.2. InitNet

InitNet consists of 3 separate networks: one for albedo,
normal, and roughness. We will call these InitNetModules.
Each InitNetModule takes in 19 channels that are the con-
catenation of the six three channel images and the segmen-
tation mask. The InitNetModule architecture is given by:

• InitNetModule c := conv k7 f64 - BN - Relu - Res 64
- Res 64 - conv k7 fc.

Where c is 3, 2 and 1 for albedo, normal, and roughness,
respectively.

…

InitNet
32x32

RecNet
64x64

RecNet…
256x256

RecNet…
1024x1024

Normal

Normal

Albedo

Roughness

Input Images

Figure 1: We propose a recursive multi-resolution architecture, RecNet, that predicts surface normal, albedo and roughness from the input
image(s) and from the prediction at the previous step by continuously upsampling by a factor of 2. The recursion is initialized by InitNet.

5.3. RecNet

Similarly to InitNet, RecNet consists of three RecNet-
Modules. Each takes in 25 channels: 19 for the images
and masks, and 6 for the albedo, normal, and roughness
estimated by the previous step, which are upsampled by a
factor of two to match the size of the input images. The
RecNetModule structure is defined as:

• RecNetModule c := conv k7 f64 - BN - Relu -
Res 64 - Res 64 - conv k3 f128 s2 - BN - Relu -
Res 128 - Res 128 - conv k3 f256 s2 - Res 256 -
Res 256 - convt k3 f128 s2 - Res 128 - Res 128 -
convt k3 f64 s2 - BN - Relu - conv k7 fc

Where c is 3, 2 and 1 for albedo, normal, and roughness,
respectively. A diagram of the InitNet-RecNet application
is included in Figure 1 for reference.

5.4. ResNet for Ablation

For the ablation study we used what is referred to as
ResNet in the paper. This is actually 3 separate ResNets,
one for albedo, normal, and roughness; although they are
trained simultaneously. Their architectures are all the same
and are based on [11]. For consistence we refer to these
ResNets as ResNetModules. Their architecture is given by:

• ResNetModule := conv k7 f64 - BN - Relu -
conv k3 f128 s2 - BN - Relu - conv k3 f256 s2 - BN
- Relu - Res 256 - Res 256 - Res 256 - Res 256 -
convt k3 f128 s2 - BN - Relu - convt k3 f64 s2 - BN
- Relu - conv k7 fc

Where c is 3, 2 and 1 for albedo, normal, and roughness,
respectively.

6. SDPS-Net Retraining
SDPS-Net [3] consists of two networks: LCNet which

takes n images of an object under varying lighting and esti-
mates the lighting conditions for each image, and NENet

which takes the same n images as well as the estimated
lighting directions and predicts the normals. Although in
principle these networks can take an arbitrary number of
input images, we found that performance decreases signifi-
cantly if the number of training images differs greatly from
the number of test images. Therefore, to give SDPS-Net
a fair chance, we retrained SDPS-Net three times with 1,2
and 3 input images at training time. For the case of 2 and
3 input images this consisted of a full retraining of LCNet
and NENet using the author’s default parameters. In the one
image case, we only trained NENet by providing it with the
ground truth lighting directions rather than those predicted
by LCNet.

7. Integrating Normal Maps

Let f(x, y) be the depth of the surface at pixel location
(x, y), then the surface normal is given by (n1, n2, n3) =

1√
(f2
x+f2

y+1)
(fx, fy,−1). So to find f we can solve the sys-

tem.

fx =
−n1
n3

(7)

fy =
−n2
n3

(8)

We discretize this as:

f(xi+1, yj)− f(xi, yj) =
−n1(xi, yj)
n3(xi, yj)

(9)

f(xi, yj+1)− f(xi, yj) =
−n2(xi, yj)
n3(xi, yj)

(10)

Where (i, j) are the pixel indices. For a normal map with
n pixels these equations describe a sparse linear system of
2n equations in n unknowns. We find a least squares solu-
tion to this system using using Pytorch’s LBGFS optimizer.

8. Comparison to SDPSNet (2 Image)
In Tables 1 and 2 we compare our method to SDPS-Net

[3], and SDPS-Net retrained with 2 input images on DiLi-
GenT in the case where the network is given two input im-
ages. For the inputs we use either the images from the front
and front-left 1 or front and front-right 2. We show superior
performance to SDPS-Net even when it is retrained specifi-
cally for two input images.

9. Results on Li’s Data
In Figures 2 and 3 we compare our results for albedo,

normal, and roughness estimation to those of [6] on the data
captured by [6].

10. More Results on Our Data
In this section, we show more comparisons to state-of-

the-art methods for multi-image normal estimation and sin-
gle image normal, albedo, and roughness estimation on
the data we captured. We also show more results on im-
ages captured with our minimal setup using only an iPhone,
flashlight, and improvised stand in Figure 4.

Comparisons to SDPS-Net on the three image input
problem are found in Figures 5 and 6. Comparisons to Li’18
[6] and Boss’20 [2] on the single input image problem are
found in Figure 7,8,9,10, 11,12 and 13.

References
[1] 3d textures. https://3dtextures.me/. Accessed:

2020.
[2] Mark Boss, Varun Jampani, Kihwan Kim, Hendrik P.A.

Lensch, and Jan Kautz. Two-shot spatially-varying brdf and
shape estimation. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2020.

[3] Guanying Chen, Kai Han, Boxin Shi, Yasuyuki Matsushita,
and Kwan-Yee K. Wong. Sdps-net: Self-calibrating deep
photometric stereo networks. In CVPR, 2019.

[4] R. L. Cook and K. E. Torrance. A reflectance model for com-
puter graphics. ACM Trans. Graph., 1(1):7–24, Jan. 1982.

[5] Wenzel Jakob. Mitsuba renderer, 2010. http://www.mitsuba-
renderer.org.

[6] Zhengqin Li, Zexiang Xu, Ravi Ramamoorthi, Kalyan
Sunkavalli, and Manmohan Chandraker. Learning to recon-
struct shape and spatially-varying reflectance from a single
image. In SIGGRAPH Asia 2018 Technical Papers, page
269. ACM, 2018.

[7] Abhimitra Meka, Maxim Maximov, Michael Zollhoefer,
Avishek Chatterjee, Hans-Peter Seidel, Christian Richardt,
and Christian Theobalt. Lime: Live intrinsic material es-
timation. In Proceedings of Computer Vision and Pattern
Recognition (CVPR), June 2018.

[8] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wen-
zel Jakob. Mitsuba 2: A retargetable forward and inverse
renderer. ACM Trans. Graph., 38(6), Nov. 2019.

[9] Olivia Wiles and Andrew Zisserman. Silnet : Single- and
multi-view reconstruction by learning from silhouettes. In
British Machine Vision Conference 2017, BMVC 2017, Lon-
don, UK, September 4-7, 2017. BMVA Press, 2017.

[10] Zexiang Xu, Kalyan Sunkavalli, Sunil Hadap, and Ravi
Ramamoorthi. Deep image-based relighting from optimal
sparse samples. ACM Transactions on Graphics (TOG),
37(4):126, 2018.

[11] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networkss. In Computer Vision
(ICCV), 2017 IEEE International Conference on, 2017.

Table 1: Two Image Results on DiLiGenT (Left) Comparison of SDPS-Net [3], SDPS-Net retrained with 2 input images, and our method
on DiLiGenT, using images front and front-left. MAE (in degrees) for each object is reported.

Algorithm ball cat pot1 bear pot2 buddha goblet reading cow harvest mean
SDPS-Net 25.3 27.4 29.5 23.7 24.0 31.7 36.7 35.0 28.9 31.7 29.4

SDPS-Net (retrained) 5.7 17.1 14.9 8.7 16.3 20.3 25.2 24.6 12.7 26.1 17.2
Ours 6.2 14.7 11.4 7.7 11.2 15.0 18.7 17.7 9.7 24.7 13.7

Table 2: Two Image Results on DiLiGenT (Right) Comparison of SDPS-Net [3], SDPS-Net retrained with 2 input images, and our
method on DiLiGenT, using images front and front-right. MAE (in degrees) for each object is reported.

Algorithm ball cat pot1 bear pot2 buddha goblet reading cow harvest mean
SDPS-Net 27.0 31.0 33.8 24.2 26.0 30.8 41.8 37.1 29.5 31.6 31.3

SDPS-Net (retrained) 6.3 19.0 17.4 9.1 15.8 21.1 27.5 24.6 14.4 26.5 18.2
Ours 6.8 14.9 11.7 7.7 10.9 15.3 19.1 19.7 10.7 24.0 14.1

Figure 2: Comparison of our single image results vs. those of Li’18 [6] on data captured by Li’18.

Figure 3: Comparison of our single image results vs. those of Li’18 [6] on data captured by Li’18.

Figure 4: Results taken with only an iPhone, flashlight and improvised stand.

Figure 5: Normal comparison with 3 input images between our method and SDPS-Net [3] retrained with 3 input images.

Figure 6: Normal comparison with 3 input images between our method and SDPS-Net [3] retrained with 3 input images.

Figure 7: Normal comparison with 1 input image between our method, Li’18 [6], Boss’20 [2], and SDPS-Net retrained with 1 input image
[3]

.

Figure 8: Normal comparison with 1 input image between our method, Li’18 [6], Boss’20 [2], and SDPS-Net retrained with 1 input image
[3]

.

Figure 9: Normal comparison with 1 input image between our method, Li’18 [6], Boss’20 [2], and SDPS-Net retrained with 1 input image
[3].

Figure 10: Albedo estimation comparison between between our multi-image method with six input images (ours six), our single-image
method (ours single), Li’18 [6], and Boss’20 [2]. Li’18 uses only a single flash image and Boss’20 uses one image with a flash and one
without a flash.

Figure 11: Albedo estimation comparison between between our multi-image method with six input images (ours six), our single-image
method (ours single), Li’18 [6], and Boss’20 [2]. Li’18 uses only a single flash image and Boss’20 uses one image with a flash and one
without a flash.

Figure 12: Roughness estimation comparison between between our multi-image method with six input images (ours six), our single-image
method (ours single), Li’18 [6], and Boss’20 [2]. Li’18 uses only a single flash image and Boss’20 uses one image with a flash and one
without a flash. Brighter indicates rougher i.e. less specular.

Figure 13: Roughness estimation comparison between between our multi-image method with six input images (ours six), our single-image
method (ours single), Li’18 [6], and Boss’20 [2]. Li’18 uses only a single flash image and Boss’20 uses one image with a flash and one
without a flash. Brighter indicates rougher i.e. less specular.

