
– Supplementary Material –
Monocular Depth Estimation via Listwise Ranking

using the Plackett-Luce Model

1. Benchmark Dataset Characteristics

Table 1 shows the characteristics of the benchmark datasets, including their respective maximum depth values (capacity).
We use these values to limit the recognized depth in the images as described in [9]. These values were also used to normalize
the ground truth depths to get metric errors on a similar scale for all datasets.

Table 1. Properties of datasets being used within the zero-shot cross-dataset evaluation.

Dataset # Test Instances Sensor Type Diversity Depth Capacity (in m)

Ibims [5] 100 Laser Indoor 50
Sintel [2] 1064 Synthetic Animated 72
DIODE [12] 771 Laser Indoor, outdoor 350
TUM [10] 1815 Motion Parallax Indoor 10

Since the depth annotations of Sintel [2] are given in the inverse depth space, we did not apply the transformation 1
D[l]+1

to calculate the nDCG scores as described in our paper (cf. Section 4.3). Instead, we directly used the already inverted
depth values. Furthermore, in the case of TUM, we used the preprocessed dataset version as provided by the authors of [7].
Thereby, we considered the motion parallax (so-called “Plane-Plus-Parallax”) depth map, which was constructed based on flow
predictions between multiple views. We found these depth signals to provide a more precise and reliable source for calculating
our error metrics compared to the originally provided Kinect sensor values.

2. Baseline Characteristics

Table 2 gives an overview of all baseline models considered within our empirical evaluation, together with the data being
used for training. The diversity of the training data categorizes the individual datasets in terms of the variety of their captured
scenes. MC represents a special case due to only incorporating images showing humans, but also indoor and outdoor.

Table 2. Baselines together with their training data considered within our empirical study.

Model Loss Class Training set # Examples Training Data Diversity

DenseDepth [1]

(Scale-invariant)
Regression

NYU 50k Low
MegaDepth [8] MegaDepth 626k High
BTS [6] NYU 24k Low
MC [7] MC 136k Medium
MiDaS [9] HR-WSI 20k High

MonoDepth2 [4] Self-Sup. KITTI 40k Low

YouTube3D [3]
Relative

RW+DIW+YT3D 1219k High
Xian 2020 [13] HR-WSI 20k High

3. Experimental Details

For the loss comparison (cf. Section 4.4.1), we compared our model on the ResNet-based architecture (PLDepthResNet) to
the scale-invariant regression [9] and pairwise ranking [13] approach. Thereby, we optimized all models for 50 epochs with
Adam and a batch size of 40 on four Nvidia Titan RTX. For the scale-invariant regression and our PL model, we used an initial
learning rate of 0.001 multiplied by

√
0.1 after 25 epochs, while the pairwise ranking approach used an initial learning rate

of 0.01 with the same learning rate schedule. In all three cases, input images were resized to 448× 448 and data has been
augmented by horizontally flipping with a 50% chance.



In the second experimental study, where we trained our model on the proposed EfficientNet-based architecture (PLDepth-
EffNet, cf. Fig. 3), we used a smaller initial learning rate of 0.0001 with the other parameters kepth the same. For each image,
we sampled 100 rankings of size 5 per epoch. We further evaluated the scale-invariant regression variant on the same model
architecture, where we used the same hyperparameters as for PLDepthEffNet, but with a higher learning rate of 0.001. The
learning rate schedule was kept the same as for the previous experiments.

4. Additional Experiments on HR-WSI

As an additional experiment, we report the ordinal error, nDCG, RMSE and δ > 1.25 as specified in the paper on the dataset
HR-WSI [13]. Here, we compare only models being trained on this dataset, namely our PL model, MiDaS and Xian 2020. The
presented results were computed on the separate validation set of 400 instances, which was used for model optimization of the
mentioned approaches. Thereby, we consider the same trained models as used for the ordinal and metric error calculation in
Section 4.4.2 and 4.4.3 of our paper.

Table 3 shows the averaged results for three runs. As can be seen, our model is superior with regard to most of the metrics.
Only for the nDCG, the scale-invariant regression variant MiDaS turns out to be superior, although only slightly. Fig. 1 further
shows exemplary predictions on HR-WSI.

Table 3. Results on the validation split of HR-WSI for the models being trained on the corresponding training split. The same experimental
settings as for the model comparison apply here. ↓ refers to “lower is better”, while ↑ denotes the opposite.

Model Ord. Err. (↓) nDCG (↑) RMSE (↓) δ > 1.25 (↓)

MiDaS [9] 0.192 0.839 0.088 0.294
Xian 2020 [13] 0.166 0.838 0.154 0.558

PLDepthEffNet 0.164 0.837 0.069 0.192
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Figure 1. Exemplary predictions of the models trained on HR-WSI for validation set samples.



5. Additional Model Predictions
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Figure 2. Model predictions for samples of the benchmark datasets (rescaled and shifted acc. to the ground truth depth values).



6. PLDepthEffNet Model Architecture
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Figure 3. PLDepthEffNet U-net model architecture as proposed in the paper. The blue downsampling layers are specified by the used
EfficientNet [11] backbone. The layer captions specify the corresponding output dimensionality of the respective layers.
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