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S1. The Proofs
Theorem 1 (Local explanations with respect to label consistency). Let γ = α · v where ||γ|| = α and ||v|| = 1. Let
D = {xi} be a set of data samples where ||xi − x0|| 5 ε. For a given saliency map m calculated from x0, it holds that

α =
c

||m||1
· 2

|| − g(x0 + αv) + g(x0)||+ 2||g(x0)||
(S1)

where

g(x) = −∇L(x,m) = ∇ log f(m� x). (S2)

It also holds that the loss function in Eq. (1) with respect to x0 + γ is upper-bounded as follows:

L(x0 + γ,m) 5

α||m||1
( || − g(x0 + αv) + g(x0)||

2
+ ||g(x0)||

)
.

(S3)
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Proof. We begin with the definition of Hessian of the loss function L(x0,m) with respect to input x at x0 to learn a saliency
m as

H =
∇L(x0 + γ,m)−∇L(x0,m)

γ
=
∇L(x0 + αv,m)−∇L(x0,m)

αv
(S4)

Then,

Hγ = Hαv ≈ ∇L(x0 + αv,m)−∇L(x0,m) (S5)

By substituting L(m� x) = − log f(m� x) into Eq. (S5), we have

Hγ = −∇ log f(m� (x0 + αv)) +∇ log f(m� x0) (S6)

= − ∂ log f(m� x+ αm� v)
∂(m� x) �m

∣∣∣∣
x0+αv

+
∂ log f(m� x)
∂(m� x) �m

∣∣∣∣
x0

(S7)

We rewrite g(x) in Eq. (6) as

g(x) =
∂ log f(m� x)
∂(m� x) . (S8)

Then, Eq. (S7) is given by
Hγ = {−g(x0 + αv) + g(x0)} �m (S9)

Using the Cauchy–Schwarz inequality, for the constraint of Eq. (4), the following holds

∇L(x0,m)T γ +
1

2
γTHγ 5 ||∇L(x0,m)T || · ||γ||+ 1

2
||γ|| · ||Hγ|| (S10)

(S11)

By integrating Eq. (S9) into Eq. (S10),

∇L(x0,m)T γ +
1

2
γTHγ 5 α||g(x0)|| · ||m||+

α

2
|| − g(x0 + αv) + g(x0)|| · ||m|| (S12)

Using ||m|| 5 ||m||1, it holds that

∇L(x0,m)T γ +
1

2
γTHγ 5 α||g(x0)|| · ||m||1 +

α

2
|| − g(x0 + αv) + g(x0)|| · ||m||1. (S13)

Combining Eq. (4) and Eq. (S13) gives

α||g(x0)|| · ||m||1 +
α

2
|| − g(x0 + αv) + g(x0)|| · ||m||1 = c (S14)

By rearranging Eq. (S14), we reach Eq. (5),

α =
c

||m||1
· 2

|| − g(x0 + αv) + g(x0)||+ 2||g(x0)||
.

Finally, combining Eq. (1) and Eq. (S13) gives Eq. (7) as

L(x0 + γ,m) 5 α||m||1
(
1

2
|| − g(x0 + αv) + g(x0)||+ ||g(x0)||

)

Theorem 2 (Local explanations with respect to saliency map consistency). Let D = {xi} be the vicinity of the input data
x0 such that ||xi − x0|| 5 ε where ε being a small positive number. Then, distance between the gradients of explanations of
xi and x0 is lower-bounded as follows:

||∇L(xi,m)−∇L(x0,m)|| 5 ||m||1 · || − g(x0 + αv) + g(x0)||. (S15)
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Proof. We begin from the following.

∇L(x,m) = − log f(m� x) = −∂ log f(m� x)
∂(m� x) �m (S16)

Based on the requirement on the robustness of a saliency map as described in Assumption 2, we assume that the gradient of
a data point xi can be written using the first-order Taylor expansion at x0, which is given by

∇L(xi,m) = ∇L(x0 + γ,m) ≈ ∇L(x0,m) +Hγ. (S17)

Then, we consider distance between the gradients of xi and x0 as

||∇L(xi,m)−∇L(x0,m)|| = ||Hγ||. (S18)

Similar to the steps we took corresponding to Eq. (S10) in the proof of Theorem 1, the following holds

||∇L(xi,m)−∇L(x0,m)|| 5 ||m||1 · || − g(x0 + αv) + g(x0)||.

S2. Experimental Setups
S2.1. Implementation Details

For the objective function in Eq. (11), given an input image x0 = {x0,i} ∈ Rd as a vector of d pixles, we created a batch
of 100 neighboring data points with respect to x0, D, by adding random noise following the normal distribution, N(0, σ), to
each pixel x0,i, where σ is a standard deviation and σ = 0.1× (max(x0,i)−min(x0,i)).

A saliency map m is initialized following the uniform distribution on the interval [0, 0.01]. We set the parameters of the
objective function as λ1 = 0.0001 and λ2 = 1.0, respectively. We solve Eq. (11) using the stochastic gradient descent (SGD)
for 50 epochs with the learning rate set to 0.001. We denote this baseline by Ours(50) in Figure 3. We used normalized
gradient in the optimization process when applying to the SGD. We found that the normalization performed better in terms
of the quality of saliency maps and the stability of the optimization.

Computation time. The current implementation of the proposed method takes about 17 seconds to solve the optimization
with the baseline setting for an image from ImageNet on ResNet-50 using a single RTX 2080 Ti GPU.

Post-processing of saliency maps. It is required to post-process a saliency map to construct an explanation for a given im-
age by multiplying a saliency map and the image. For the proposed method, we use a saliency as a result of the optimization in
Eq. (11) directly with no additional processing of the saliency map. However, we applied two strategies differently according
to the previous methods. The first strategy is taken from [5] and applies to SmGrad, IntGrad, SimGrad, and DeepLIFT. This
strategy takes the expectation of absolute values of 3-channels, RGB, for each pixel in a saliency map. Then, a final saliency
is given by normalizing the expectation for each pixel to the 99th percentile of high value.

The second strategy applies to GradCAM and RT-Sal, where a saliency map consists of single-channel pixel-wise values.
Let g = {gi} be a saliency map that is a result of GradCAM or RT-Sal and, thus, not normalized. Then m = {mi}, which is
a normalized counterpart that we use to evaluate the explanations, is given by

mi =
gi −min(gi)

max(gi)−min(gi)
.

S2.2. Generation of Adversarial Examples

Implementing the untargeted attack. We used CleverHans [4] to implement the PGD-based untargeted attack. We
primarily follow the procedure in [3]. In particular, we applied 40 iterations of the PGD attack when generating adver-
sarial examples. Because the ResNet model in the experiments takes pre-process images where pixel values are scaled to
[−2.117,+2.639], we also changed the step size and the range of `∞-norm of perturbation for the PGD attack in the litera-
ture to 0.01 and {0.07, 0.1, 0.3, 1, 2, 4, 8} in this study, respectively.
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Implementing the targeted attacks. We used the codes released by [2] and [1] to implement the unstructured and the
structured attacks respectively.

For the structured attack, we applied the attack for 1500 iterations to the natural ResNet-50 with a learning rate of 0.0002.
We set two prefactor values of 1011 and 106 for the terms in the objective function of the attack, which correspond to a
saliency map and the accuracy loss, respectively [1].

In the case of the unstructured attack, we applied a top-k fooling that aims to generate a false saliency map where the
top-k feature importance of the saliency map of an input image is reduced as much as possible. We set k to 1000 in the
experiments. We applied the attack for 300 iterations. Due to the different preprocessing setting of the model as in the case
of the untargeted attack, we rescaled the step size and the perturbation distance used in [2] accordingly.

S3. Additional Experimental Results
S3.1. Comparison of Perturbation Distance for the Adversarial Attacks

Table S1. Difference of adversarial examples compared to their clean counterparts from ImageNet when applying the PGD-based untargeted
attack to the natural ResNet-50 by varying `∞-norm of perturbation.

`∞-norm of perturbation 0.07 0.1 0.3 1 2 4 8
Difference in `2-norm 17.8596 24.3589 67.5621 215.2923 405.0308 680.0658 861.8575

Table S2. Difference of adversarial examples compared to their clean counterparts from ImageNet when applying the targeted attacks to
the natural ResNet-50 against each method.

Methods Difference in `2-norm IntGrad SmGrad RT-Sal GradCam

Structured attack
min. 14.951 21.448 13.549 15.345
avg. 628.346 628.28 628.104 628.123
max. 1007.269 1005.27 1006.81 1006.802

Unstructured attack
min. 8.609 3.301 3.377 3.02
avg. 54.487 16.847 15.589 49.815
max. 170.175 22.06 21.812 169.387

Table S2 and Table S1 show that the perturbation distance caused by the targeted attacks is comparable to the case where
the `∞-norm of perturbation is 4. Because the proposed method is robust in such a level of perturbation against the untargeted
attack as shown in the paper (Figure 3), we assume that it is impractical to create adversarial images by applying the targeted
attacks against our method.

S3.2. Results on Similarity of Saliency Maps

In addition to Spearman’s rank-order correlation [6], we provide the results of another metric, a top-k intersection, to
evaluate the similarity of saliency maps. The top-k intersection measures the size of the intersection of the k-most important
features between a clean image and its adversary [2].

Figure S1 shows the results of top-1000 intersection, confirming that spatial similarity is unrelated to the fidelity of saliency
maps to the model predictions.

S3.3. Metrics for Feature Relevance Evaluation

Deletion and preservation are metrics to evaluate the fidelity of a given saliency map with respect to the softmax score of
the corresponding class.

Deletion. A deletion score, which is also known as pixel flipping, is calculated as follows. First, we sort pixels of the input
image according in descending order of their corresponding values in the saliency map. We apply flipping all pixels to zero
in the sorted order, creating a plot that represent a target class score of a given input, which is an explanation in this study. We
measure area-under-cover (AUC) of the plot as the deletion score of the saliency map. In general, a significant drop should
appear as early as possible with a saliency map of high fidelity. Thus, better deletion results in a low deletion score. See plots
on left for each of the methods in Figure S3 and Figure S4.
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(a) Natural ResNet-50 (b) Robust ResNet-50
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Figure S1. Similarity of the saliency maps of the adversarial examples in the top-1000 intersection against the untargeted attack.

Preservation. The measurement of a preservation score is similar to the case of a deletion score but pixels of an input
image are sorted in the ascending order with respect to the saliency map. Thus, the drop should be as late as possible, meaning
that irrelevant pixels are removed earlier than relevant ones. A high score indicates better preservation as opposed to the case
of deletion. See plots on the right for each of the methods in Figure S3 and Figure S4.

Table S3. Deletion and preservation scores of the methods on ImageNet when applied to the natural ResNet-50.

Method
Deletion

(lower is better)
Preservation

(higher is better)
SimGrad 0.1336 0.2519

GradCAM 0.1232 0.5647
SmGrad 0.0800 0.3845
IntGrad 0.0907 0.3650

DeepLIFT 0.0980 0.3570
FGVis [8] 0.0644 -

RelEx (proposed) 0.0567 0.4093

Table S3 shows the deletion and preservation scores by applying each method to clean images of the ImageNet validation
set on the natural ResNet-50. The score of FGVis [8] is taken from their paper due to the unavailability of implementation, to
the best of our knowledge, which was the state-of-the-art deletion score. Our method outperformed FGVis, achieving a new
state-of-the-art performance in both deletion and preservation scores.

S3.4. Results on the Targeted Attacks

Figure S2 depicts the additional results of the unstructured attack against three more methods, SmGrad, IntGrad, and
GradCAM.
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(a) Attack against SmGrad

(b) Attack against IntGrad
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Figure S2. Target class retrieval performance against the unstructured attacks on the natural ResNet-50 for an explanation presented
below each plot. Plots correspond to the adversarial images against (a) SmGrad [5], (b) IntGrad [7], and (c) GradCAM [5].
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S3.5. Results on Feature Relevancy of Saliency Maps

We provide the deletion and the preservation plots with respect to each of the explanation methods against the untargeted
attack.

Simple Gradient

GradCAM

RelEx (proposed)

Smooth Gradient

Integrated Gradient

DeepLIFT

Real-time Saliency

Figure S3. The relevancy of saliency maps for each method in terms of deletion and preservation scores on the natural ResNet-50 against
the untargeted attack.
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Simple Gradient

GradCAM RelEx (proposed)

Smooth Gradient

Integrated Gradient

DeepLIFT

Figure S4. The relevancy of saliency maps for each method in terms of deletion and preservation scores on the robust ResNet-50 against
the untargeted attack.
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S3.6. Extracting Explanations of Arbitrary Classes

Figure S5 illustrates the additional results of explaining arbitrary classes on CIFAR-10. The proposed method created
explanations of three non-target classes, classes 1, 5, and 9, that were applied to randomly selected images of the target class
7. The experiments were applied to both the clean images and their adversaries created by the PGD-based untargeted attack.

The plots show that the proposed method extracted the explanations of the chosen non-target class correctly. The expla-
nations faithfully contain the information of their corresponding classes. In other words, almost no evidence on other classes
were captures in the explanations.
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Figure S5. Explaining non-target classes that are arbitrarily chosen. The horizontal axes of the plots enumerate all classes in the CIFAR-10
dataset on the natural ResNet-18 and the vertical ones correspond to the softmax scores of all the classes for a given explanation of the
arbitrary classes.
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S3.7. Additional Qualitative Results

We present additional qualitative results of saliency maps. In the following figures, numbers below images represent the
softmax scores of the target classes of the images. Numbers below saliency maps represent the softmax scores of the target
classes with respect to explanations corresponding to the saliency maps. ε denotes `∞-norm of perturbation. Saliency maps
are best viewed zoomed-in on screen.

S3.7.1 The Results of the Untargeted Attack for the Natural ResNet-50
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Figure S6. Qualitative results of the methods on the natural ResNet-50 against the untargeted attack.
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Figure S6a. Qualitative results of the methods on the natural ResNet-50 against the untargeted attack (continued).
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Figure S6b. Qualitative results of the methods on the natural ResNet-50 against the untargeted attack (continued).
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S3.7.2 The Results of the Untargeted Attack against the Robust ResNet-50
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Figure S7. Qualitative results of the methods on the robust ResNet-50 against the untargeted attack.
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Figure S7a. Qualitative results of the methods on the robust ResNet-50 against the untargeted attack (continued).
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Untargeted,
robust resnet50 3
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Figure S7b. Qualitative results of the methods on the robust ResNet-50 against the untargeted attack (continued).
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S3.7.3 The Results of the Targeted Attacks on the Natural ResNet-50: Structured Attack

The structure attack aims to change the saliency of an original image to that of the target image. We use the ”cat” picture as
the target image for all examples below. The first and the second row represent saliency maps of the target and the original
images by each method, respectively. We applied the structured attack to SmGrad, IntGrad, GradCAM, and RT-Sal (the red
box), creating adversarial images for each method being attacked. Then, we extracted explanations of the adversarial images
against a method by using other methods (the blue box) as shown below. Our method RelEx generates consistent saliency
maps against the attacks to all the methods unlike other methods.

 image RelEx SmGrad IntGrad GradCAM RT-Sal 

target 

      

original 

 
0.579 

 
0.999 

 
0.356 

 
0.486 

 
0.456 

 
0.8e-03 

SmGrad 

 
0.551 

 
0.999 

 
0.649 

 
0.694 

 
0.628 

 
0.1e-03 

IntGrad 

 
0.575 

 
0.999 

 
0.392 

 
0.749 

 
0.114 

 
0.3e-03 

 

GradCAM 

 
0.573 

 
0.999 

 
0.591 

 
0.487 

 
0.815 

 
0.002 

RT-Sal 

 
0.675 

 
0.999 

 
0.327 

 
0.697 

 
0.323 

 
0.001 

 

Figure S8. Qualitative results of the methods on the natural ResNet-50 against the structured attack.
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 image RelEx SmGrad IntGrad GradCAM RT-Sal 

target 

      

original 

 
0.958 

 
0.999 

 
0.938 

 
0.266 

 
0.991 

 
0.907 

SmGrad 

 
0.958 

 
0.999 

 
0.3e-03 

 
0.007 

 
0.995 

 
0.684 

IntGrad 

 
0.955 

 
0.999 

 
0.816 

 
0.261 

 
0.689 

 
0.6e-03 

 

GradCAM 

 
0.963 

 
0.999 

 
0.893 

 
0.562 

 
0.936 

 
0.542 

RT-Sal 

 
0.958 

 
0.999 

 
0.984 

 
0.899 

 
0.981 

 
0.798 

 

Figure S8a. Qualitative results of the methods on the natural ResNet-50 against the structured attack (continued).
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 image RelEx SmGrad IntGrad GradCAM RT-Sal 

target 

      

original 

 
0.999 

 
0.999 

 
0.002 

 
0.002 

 
0.997 

 
0.002 

SmGrad 

 
0.997 

 
0.999 

 
1.75e-05 

 
1.95e-05 

 
0.984 

 
0.02 

IntGrad 

 
0.998 

 
0.999 

 
0.116 

 
0.265 

 
0.743 

 
0.026 

 

GradCAM 

 
0.999 

 
0.999 

 
0.248 

 
0.006 

 
0.999 

 
0.285 

RT-Sal 

 
0.999 

 
0.999 

 
0.006 

 
0.3e-03 

 
0.976 

 
0.1e-03 

 

Figure S8b. Qualitative results of the methods on the natural ResNet-50 against the structured attack (continued).
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S3.7.4 The Results of the Targeted Attack against the Natural ResNet-50: Unstructured Attack

The unstructure attack aims to change the saliency of an original image to that of the target image. We applied the unstructured
attack to SmGrad, IntGrad, GradCAM, and RT-Sal (the red box), creating adversarial images for each method being attacked.
We chose one method being attacked, of which saliency maps appear to change significantly. Then, we extracted explanations
of the adversarial images against the selected method by using other methods (the blue box) as shown below. We present the
selected method at the bottom of each figure. Our method RelEx generates consistent saliency maps with high target class
scores of corresponding explanations unlike other methods.

unstructured,
natural resnet50 
1

 0 1 2 4 8 

Image 

 
0.992 

 
0.997 

 
0.998 

 
0.997 

 
0.96 

SmGrad 

 
0.003 

 
0.019 

 
0.01 

 
0.3e-03 0.2e-03 

IntGrad 

 
0.2e-03 

 
0.2e-03 

 
7.78e-05 

 
2.7e-05 3.09e-05 

GradCAM 

 
0.964 

 
0.986 

 
0.986 

 
0.986 0.986 

RT-Sal 

    

✏

 0 1 2 4 8 

RelEx 

 
0.999 

 
0.999 

 
0.999 

 
0.999 0.999 

IntGrad 

 
0.2e-03 

 
0.1e-03 

 
4.39e-05 

 
9.39e-05 4.66e-05 

GradCAM 

 
0.964 

 
0.978 

 
0.976 

 
0.996 0.991 

RT-Sal 

 
0.911 

 
0.943 

 
0.927 

 
0.991 0.959 

 

✏

Applied to adversarial images against SmGrad

𝜖

𝜖

Figure S9. Qualitative results of the methods on the natural ResNet-50 against the unstructured attack.
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unstructured,
natural resnet50 
2

 0 1 2 4 8 

RelEx 

 
0.999 

 
0.999 

 
0.999 

 
0.999 0.999 

SmGrad 

 
0.021 

 
0.007 

 
0.082 

 
0.003 0.031 

GradCAM 

 
0.999 

 
0.999 

 
0.998 

 
0.999 0.807 

RT-Sal 

 
0.999 

 
0.999 

 
0.992 

 
0.995 0.946 

 

✏

 0 1 2 4 8 

Image 

 
0.999 

 
0.941 

 
0.502 

 
0.987 0.994 

SmGrad 

 
0.021 

 
0.009 

 
0.042 

 
0.3e-03 0.002 

IntGrad 

 
0.002 

 
5.88e-05 

 
0.3e-03 

 
4.63e-05 0.3e-03 

 

✏

GradCAM 

 
0.999 

 
0.999 

 
0.999 

 
0.999 0.999 

RT-Sal 

 
0.999 

 
0.997 

 
0.999 

 
0.999 0.997 

 

Applied to adversarial images against IntGrad

𝜖

𝜖

Figure S9a. Qualitative results of the methods on the natural ResNet-50 against the unstructured attack (continued).
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 0 1 2 4 8 

RelEx 

 
0.999 

 
0.999 

 
0.999 

 
0.999 0.999 

SmGrad 

 
0.007 

 
0.002 

 
0.007 

 
0.003 0.004 

IntGrad 

 
1.67e-05 

 
1.55e-05 

 
1.55e-05 

 
1.55e-05 1.55e-05 

RT-Sal 

 
0.997 

 
0.804 

 
0.804 

 
0.804 0.804 

 

✏

unstructured,
natural resnet50 
3

 0 1 2 4 8 

Image 

 
0.997 

 
0.978 

 
0.978 

 
0.978 0.978 

SmGrad 

 
0.007 

 
0.006 

 
0.001 

 
3.13e-05 6.07e-06 

IntGrad 

 
1.67e-05 

 
1.01e-07 

 
1.26e-06 

 
7.48e-07 4e-06 

 

✏

GradCAM 

 
0.995 

 
0.893 

 
0.893 

 
0.893 0.893 

RT-Sal 

 
0.997 

 
0.981 

 
0.965 

 
0.757 0.908 

 

Applied to adversarial images against GradCAM

𝜖

𝜖

Figure S9b. Qualitative results of the methods on the natural ResNet-50 against the unstructured attack (continued).
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