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3DPW Human3.6M
Method MPVE| MPIPE| PA-MPIPE | MPIJPE | PA-MPIJPE |
HMR [11] - — 81.3 88.0 56.8
GraphCMR [14] — — 70.2 — 50.1
SPIN [13] 116.4 — 59.2 — 41.1
Pose2Mesh [3] — 89.2 58.9 64.9 47.0
I2LMeshNet [15] — 93.2 57.7 55.7 41.1
VIBE [12] 99.1 82.0 51.9 65.6 41.4
HoloPose [7] — - — 60.2 46.5
Arnab et al. [2] — — 72.2 77.8 54.3
DenseRaC [17] — — — — 48.0
Zhang et al. [19] — — 72.2 - 41.7
Zeng et al. [18] — - — 60.6 39.3
HKMR [5] — — — 59.6 43.2
METRO (Ours) 88.2 77.1 47.9 54.0 36.7

Figure 1: Adding references (HKMR [5], Zeng et al. [
to the comparisons on 3DPW and Human 3.6M datasets.

A. Additional Reference

We would like to add additional references (HKMR [5],
Arnab et al. [2], Zeng et al. [18], Zhang et al. [19],
DenseRaC [17], HoloPose [7]). Among the new refer-
ences, HKMR [5] regresses SMPL parameters by leverag-
ing a pre-specified hierarchical kinematic structure that con-
sists of a root chain and five child chains corresponding to
5 end effectors (head, left/right arms, left/right legs). Holo-
Pose [7] estimates rotation angles of body joints, and uses it
as the prior to guide part-based human mesh reconstruction.
Zeng et al. [ 18] designs the continuous UV map to preserve
neighboring relationships of the mesh vertices. Zhang et
al. [19] addresses the occlusion scenario by formulating the
task as a UV-map inpainting problem. Since 3DPW is a
relatively new benchmark, most literature reported results
on Human3.6M, but not 3DPW. We have added their Hu-
man3.6M results in Table 1. As we can see, our method

1, Zhang et al. |

1, DenseRaC [17], Arnab et al. [2], HoloPose [7])

outperforms all of the prior works by a large margin.

Recently, researchers are exploring the transformer mod-
els for other 3D vision topics, such as multi-view human
pose estimation [8] and hand pose estimation based on point
could [10]. We encourage the readers to undertake these
studies for further explorations.

B. Implementation Details and Computation
Resource

We develop METRO using PyTorch and Huggingface
transformer library. We conduct training on a machine
equipped with 8 NVIDIA V100 GPUs (32GB RAM) and
we use batch size 32. Each epoch takes 32 minutes and we
train for 200 epochs. Overall, our training takes 5 days. We
use the Adam optimizer and a step-wise learning rate de-
cay. We set the initial learning rate as 1 x 10~* for both



Model Dimensionality Reduction Scheme PA-MPIJPE |
Transformer [16] (H+3)—3 208.7
METRO (H+3)—H/2-3 192.1
METRO (H+3)—> H/2—>H/4—3 43.8
METRO (H+3)—~H/2—~H/4— H/8 =3 36.7

Table 1: Performance comparison of different dimentionality reduction schemes, evaluated on Human3.6M validation set.
Please note that all the transformer variants have the same total number of hidden layers (12 layers) for fair comparison.

H=2048.

CNN (HRNet-W64) Transformer
# Parameters 128M 102M
Inference time 52.05 ms 28.22 ms

Table 2: Number of parameters and inference time per im-
age. The runtime speed is estimated by using batch size 1.

Positional Encoding PA-MPIJPE |

Sinusoidal [16] 37.5
Ours 36.7

Table 3: Comparison of different positional encoding
schemes, evaluated on Human3.6M validation set.

transformer and CNN backbone. The learning rate is de-
cayed by a factor of 10 at the 100th epoch. Our multi-layer
transformer encoder is randomly initialized, and the CNN
backbone is initialized with ImageNet pre-trained weights.
Following [14, 13], we apply standard data augmentation
during training.

We evaluate the runtime speed of our model using a ma-
chine equipped with a single NVIDIA P100 GPU (16GB
RAM). Our runtime speed is about 12 fps using batch size
1. The runtime speed can be accelerated to around 24 fps
using batch size 32. Table 2 shows the details of each mod-
ule in METRO.

For our masked vertex modeling, following BERT [4],
we implement it by using a pre-defined special [MASK] to-
ken (2051-D floating value vector in our case) to replace the
randomly selected input queries.

C. Progressive Dimensionality Reduction

Since we gradually reduce the hidden sizes in the trans-
former architecture, one interesting question is whether
such a progressive dimensionality reduction scheme is use-
ful. We have conducted an ablation study on different
schemes, and Table 1 shows the comparison. In Table I,
the row “(H+3)—3” corresponds to a baseline using one
linear projection H + 3 to 3. The result is poor. Row

“(H+3)—H/2—3” is another baseline which keeps a smaller
dimension throughout the network. The result is also bad.
Our finding is that large-step (steep) dimension reduction
does not work well for 3D mesh regression. Our progressive
scheme is inspired by [9] which performed dimensionality
reduction gradually with multiple blocks.

D. Positional Encoding

Since our positional encoding is different from the con-
ventional one, one may wonder what if we use sinusoidal
functions [16] but not a template mesh. We have com-
pared our method with the conventional positional encod-
ing which uses sinusoidal functions, and Table 3 shows the
results. We see that using sinusoidal functions is slightly
worse. This is probably because directly encoding coordi-
nates makes it more efficient to learn 3D coordinate regres-
sion.

E. Qualitative Results

Figure 3 shows a qualitative comparison with the previ-
ous image-based state-of-the-art methods [15, 14] in chal-
lenging scenarios. These methods only use a single frame as
input. In the first row, the subject is heavily bending. Prior
works have difficulty in reconstructing a correct body shape
for the subject. In contrast, our method reconstructs a rea-
sonable human mesh with correct pose. In the second row,
the subject is occluded by the vehicle. We see that prior
works are sensitive to the occlusions, and failed to gener-
ate correct human mesh. In contrast, our method performs
more robustly in this occlusion scenario. In the bottom row,
the subject is sitting on the chair. Our method reconstructed
a better human mesh compared to the previous state-of-the-
art methods.

Figure 4 shows the qualitative results of our method on
3D hand reconstruction. Without making any modifica-
tions to the network architecture, our method works well
for hands and is robust to occlusions. It demonstrates our
method’s advantage that it can be easily extended to other
types of objects.



Method PA-MPVPE | PA-MPJPE| F@5mm{T F@I15mm7
I2L.MeshNet [15] 7.6 74 0.681 0.973
METRO 6.7 6.8 0.717 0.981
METRO + Test time augmentation 6.3 6.5 0.731 0.984

Table 4: Effectiveness of test-time augmentation on FreiHAND test set.

F. Non-local Interactions of Hand Joints

We further conduct quantitative analysis on the non-local
interactions among hand joints learned by our model. We
randomly sample 1000 samples from FreiHAND test set,
and estimate an overall self-attention map. Figure 5 shows
the interactions among 21 hand joints. There are 21 rows
and 21 columns. Pixel (¢, j) represents the amount of at-
tention that hand joint ¢ attends to joint j. A darker color
indicates stronger attention. We can see that the wrist joint
(column 0) receives strong attentions from all the joints. In-
tuitively wrist joint acts like a “root” of the hand’s kinemat-
ics tree. In addition, columns 4, 8, 12, and 16 receive strong
attentions from many other joints. These columns corre-
spond to the tips of thumb, index, middle, and ring fingers,
respectively. These finger tips are end effectors [ 1] and they
can be used to estimate the interior joint positions in inverse
kinematics. On the other hand, the tip of pinky only receives
attentions from the joints on the ring finger. This is proba-
bly because pinky is not as active as the other fingers and its
motion is more correlated to the ring finger compared to the
other fingers.

G. Test-Time Augmentation for FreiHAND

We have explored test-time augmentation in our Frei-
HAND experiments. We do not use test-time augmentation
in Human3.6M and 3DPW experiments. Given a test image,
we apply different rotations and scaling to the test image.
We then feed these transformed images to our model, and
average the results to obtain the final output mesh. In or-
der to compute an average 3D mesh, we perform 3D align-
ment (i.e., Procrustes analysis [6]) to normalize the output
meshes. In Table 4, we empirically observed that such an
implementation is helpful to improve 0.4 PA-MPVPE on
FreiHAND test set.

H. Limitations

As METRO is a data-driven approach, it may not per-
form well when the testing sample is very different from
the training data. We show some example failure cases in
Figure 2 where the test images are downloaded from the In-
ternet. First, as shown in Figure 2(a), we observed that if the

target body shape is very different from the existing training
data (i.e., SMPL style data), our method may not faithfully
reconstruct the muscles of the subject. Secondly, as shown
in Figure 2(b), our model fails to reconstruct a correct mesh
due to the fact that there is no glove data in the training set.
Finally, the proposed method is a mesh-specific approach.
If we were to apply our pre-trained right-hand model to the
left-hand images, as can be seen in Figure 2(c), our model
will not work well. How to develop a unified model for
different 3D objects is an interesting future work.
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Input GraphCMR [14] I2L-M [15] Ours

Figure 3: Qualitative comparison between our method and other single-frame-based approaches. Our method is more robust
to challenging poses and occlusions.



Figure 4: Qualitative results of our method on FreiHAND test set. Our method can be easily extended to reconstruct 3D hand
mesh.
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Figure 5: Visualization of self-attentions among hand joints. There are 21 rows and 21 columns corresponding to 21 hand
joints. Pixel (¢, j) represents the amount of attention that joint ¢ attends to joint j. A darker color indicates stronger attention.
The definition of the 21 joints is shown in Figure 6.
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Figure 6: Definition of the hand joints. The illustration is adapted from [3].



