
Point2Skeleton: Learning Skeletal Representations from Point Clouds
Supplementary Material

1. Network Architecture

Fig. 1 shows the detailed network architecture of our
method. We use PointNet++ [7] as the encoder of the input
point cloud, which is composed of 4 set abstraction (SA)
levels. For each SA, we show the radius of the ball query,
the number of local patches and the feature dimensions of
the MLPs. We adopt a density adaptive strategy, i.e., multi-
scale grouping (MSG), to combine the features from two
different scales in each layer. The shared MLPs are for
processing the contextual features encoded by the Point-

Net++ to predict the final combinational weights, where
each layer is followed by a batch normalization and a ReLU
non-linearity. We also use a dropout layer with a rate of 0.2
during training.

The contextual features of the input points are linearly
combined using the predicted convex combination weights
which serve as the input surface point features correspond-
ing to a skeletal point. The combined contextual features are
concatenated with the information of skeletal spheres (cen-
ter coordinates and radii) to serve as the node features that
are input to the GAE for link prediction. Each GCN layer is

K×3

0.1 16 3→16→16→32 0.2 32 3→16→16→32

1024×64

0.2 32 64→32→32→64 0.4 64 64→32→32→64

768×128

0.4 32 128→64→64→128 0.6 64 128→64→64→128

512×256

0.6 64 256→128→128→256 0.8 128 256→128→128→256

concat

concat

concat

512×512

concat

512→384

384→256

256→256

256→128

128→100

PointNet++

PointNet++

PointNet++

PointNet++

512→16

100×16

GC 20→32

GC 32→32

GC 32→48

GC 48→64

GC 64→64

GC 64→80

GC 80→96

GC 96→96

GC 96→102

GC 102→128

GC 128→128

GC 128→144

48→64

64→80

80→96

96→102

102→128

100×4

concat

Shared
MLPs

Geometric
Transform

512×100

Feature
Combination

100×144

Decoder 100×100

32→48

Convex Combination
Weights

Skeletal
Spheres

Predicted GraphInput Points

(radius|samples | MLP)

Input Point Feature

Tensor

PointNet++

Conv1D

Graph Conv

Input
Features

Residual
Block

Matrix
Operation

Figure 1. Overall network architecture of Point2Skeleton.

also followed by a batch normalization and a ReLU activa-
tion function. We use residual blocks [4] between the con-
secutive GCN layers, where the additional branching layers
are used to align the dimension of features.

2. Rationale of Radius Computation
Given a set of densely sampled points on the boundary

surface of a 3D shape, since the shape must be inside its
convex hull, it is easy to show that any arbitrary point inside
the shape can be derived from a convex combination of the
sampled points, i.e., a linear combination with non-negative
weights {wi} summing up to 1.

𝑐0

𝑝1
𝑝2

𝑝3

𝑝…

𝑝𝑀

𝑝1𝑝2
𝑝3

𝑝5

𝑝𝑁

𝑝4

𝑝...

𝑐0

𝑟0 𝑟0

𝑑 𝑝1, 𝑐0 = 𝑑 𝑝2, 𝑐0 = ⋯ = 𝑑 𝑝𝑀 , 𝑐0 = 𝑟0 𝑑 𝑝1, 𝑐0 ≈ 𝑑 𝑝2, 𝑐0 ≈ ⋯ ≈ 𝑑 𝑝𝑁, 𝑐0 ≈ 𝑟0

(a) (b)

Figure 2. Illustration of the radius computation using closest dis-
tances. (a) An ideal case where (c0, r0) is a maximal inscribed
sphere; (b) a typical case where the surface has noise and the ra-
dius is approximated by the closest distances.

Now we show why it is reasonable to use the same
weights of convex combination to estimate the radius of a
skeletal point based on their closest distances to the sam-
pled points. Recall that, the closest distance from an input
sample point p to all the skeleton points {ci} is defined as,

d(p, {ci}) = min
c∈{ci}

‖p− c‖2 . (1)

To simplify the discussion, we first analyze an ideal
case. As shown in Fig. 2 (a), consider a skeletal sphere
s0 = (c0, r0) that is maximally inscribed in a shape, where
c0 is the coordinate of the sphere center and r0 the sphere
radius. Assume the sphere has M (M ≥ 2) touching points
on the shape surface. Obviously, the M points are the clos-
est points to c0 on the shape surface and their distances to
the center c0 are all equal to the sphere radius. Thus we
have

d(pi, c0) = r0, for i = 1, 2, ...,M. (2)

Then, given an arbitrary group of convex combination
weights {w1, w2, ..., wM} of the M points, if we use the
weights to combine the closest distances, we always obtain
a constant value which is the sphere radius:

M∑
i=1

wid(pi, c0) = r0, with
M∑
i=1

wi = 1. (3)

Figure 3. Visualization of the predicted combinational weights for
the corresponding skeletal points. Each weight value wi is scaled
by wi/wmax for better visualization, where wmax is the maxi-
mum weight value for the corresponding skeletal point.

We now analyze the typical case to generate a skeletal
point. First, we visualize the learned combinational weights
of the input points for certain skeletal points in Fig. 3. For a
given skeletal point c, although the combinational weights
to derive c are not unique, we observe that the weights are
larger for the surface points that are very close to c, but are
smaller or diminish to 0 for those far away from c. There-
fore, the skeletal point c is approximated by the convex
combination of a local set of input points that are closest to
c. As shown in Fig. 2 (b), this is similar to the case discussed
above. Hence, by using the same combinational weights,
we approximate the radius by the weighted average of the
closest distances, which therefore provides a reasonable es-
timation of the true radius at the skeletal point c.

3. Graph AutoEncoder

Given an undirected and unweighted graph with N
nodes, the encoder is defined as a series of graph convolu-
tional layers. Unlike most existing works that use a shallow
GCN (usually no more than 4 layers [9]), we use a deep
GCN with 12 layers to capture richer structures at various
levels of abstraction. Consequently, to handle the degener-
ation problem caused by the depth of the network, we also
include residual blocks [4] between consecutive layers. The
encoder is given by:

GCN(X0,A) = ÃXL−1WL−1,with

X l = σ(ÃX l−1W l−1 +X l−1), for l ∈ {1, ..., L− 1}.
(4)

Here, A ∈ {0, 1}N×N is the adjacency matrix, and Ã is
the symmetrically normalized A given by Ã = D−

1
2 (A+

IN)D−
1
2 , where D is the degree matrix of A and IN the

identity matrix indicating self-connections. X0 is the input
node features and X l the latent features. W l is a layer-
specific trainable weight matrix. σ is the ReLU activation
function and L is the number of layers. The decoder we
use is a simple inner product decoder to produce the recon-
structed adjacency matrix Â:

Â = Sigmoid(ZZT) with Z = GCN(X0,A), (5)

Figure 4. Steps to compute a simplified MAT from a surface mesh.

where Z is the learned latent features. By applying the in-
ner product on the latent variables Z and ZT , we measure
the similarity of each node inside Z. The larger the inner
product zTi zj in the embedding is, the stronger correlation
the nodes i and j exhibit, which indicates that they are more
likely to be connected.

We evaluate the effect of the number of the graph convo-
lution layers. As shown in Fig. 5, a deeper GCN achieves
better performance, i.e., smaller Masked Balanced Cross-
Entropy (MBCE) loss [8].

0.60

0.56

0.52

0.48

0.44

0.40

Number of graph convolutional layers

4 6 8 12

M
B

C
E

Figure 5. Evaluation of the number of graph convolutional layers.

4. Standard MAT for Evaluation

Computation. As mentioned in the paper, there are no ex-
isting metrics to evaluate whether a skeletonization is rea-
sonable. We use the manually simplified MAT that not only
has meaningful structures but also exhibits good geometric
accuracy, to evaluate different methods.

The main steps we adopt to generate a simplified MAT
are shown in Fig. 4. For a point cloud in our dataset, we
first find its ground-truth mesh in the ShapeNet [1]. Since
the original mesh in the ShapeNet is not watertight either,
we need to repair and convert the mesh to a strictly water-
tight one [5]. Then, we compute a standard MAT, which in-
evitably contains numerous insignificant spikes. After that,
we manually simplify the MAT using a rule-based method
[6]; we choose a certain threshold by which most spikes can

Figure 6. More examples of the simplified MAT used for evalua-
tion.

be removed and the result is clean and structurally mean-
ingful. Finally, we sample points on the simplified MAT for
evaluating the CD and HD.

Fig. 6 shows more examples of the simplified MAT
used for evaluation. It can be observed that the simplified
MATs precisely capture the underlying structures of the in-
put shapes using curve-like and surface-like components.
Thus, they are suitable for evaluating whether the skele-
tonization of a method is reasonable and accurate.

These experiments, on the other hand, show that com-
puting a clean and structurally meaningful skeletal repre-
sentation by MAT simplification is difficult and expensive,
given these tedious and time-consuming steps of geometric
processing. By comparison, our method is more feasible,
easier to use, and more efficient in practical applications.
Can we compute the MAT from the surface mesh re-
constructed from a point cloud? Note that the simpli-

fied MATs in our dataset are computed by the ground-truth
meshes corresponding to the point clouds. Considering that
the surface mesh can also be reconstructed from a point
cloud, one may wonder if we can directly reconstruct the
surface meshes from the point clouds, and then compute the
MATs based on the reconstructed surfaces. Through the ex-
periments, we find this strategy is not feasible, since the sur-
face quality of the existing surface reconstruction methods
(like Poisson reconstruction) cannot satisfy the requirement
of MAT computation. As a result, the MAT computation
algorithm crashes in most cases.

5. Effect of Input Quality
We show more detailed quantitative results for evaluat-

ing the effect of the input quality to our method. As shown
in Table 1, we input point clouds with different point num-
bers and noise levels, i.e., 2000 points without noise, 1000
points with 0.5% noise, and 500 points with 1% noise, to
our method; the quantitative results are largely similar. Be-
sides, we test some point clouds with uneven density distri-
bution, of which results are given in Fig. 7; our method is
robust to the density variation of point cloud.

CD-Recon HD-Recon CD-MAT HD-MAT
2000 - 0% 0.0372 0.1424 0.0828 0.1898

1000 - 0.5% 0.0382 0.1615 0.0851 0.2071
500 - 1% 0.0458 0.2127 0.0958 0.2524

Table 1. Quantitative evaluation results on different number of in-
put points and different levels of noise.

Figure 7. Generated skeletal meshes for point clouds with uneven
density distribution.

6. Effect of Skeletal Point Number
To study how the number of skeletal points (N) af-

fects the results of skeletal mesh generation, we use N =
200, 100 and 50 for evaluation. The qualitative and quanti-
tative results are given in Fig. 8 and Table 2. The results
suggest that, with the other conditions unchanged, using

more skeletal points leads to lower reconstruction error but
includes more insignificant details, which reduces the sim-
plicity and abstraction level. To balance the accuracy and
structural simplicity, we use N = 100 in the paper.

Figure 8. Results of skeletal mesh prediction using different num-
ber of skeletal points (N).

CD-Recon HD-Recon CD-MAT HD-MAT
N = 200 0.0310 0.1402 0.0782 0.2002
N = 100 0.0372 0.1424 0.0828 0.1898
N = 50 0.0494 0.1720 0.0990 0.2225

Table 2. Quantitative evaluation results on different number of
skeletal points (N).

7. Limitations and Failure Cases
For the skeletal point prediction, as mentioned in the pa-

per, we use convex combination of the input points to gen-
erate the skeletal points. Therefore, our method will fail
to recover a partial point cloud if its original skeleton can-
not be completely included in the convex hull of the partial
shape.

Figure 9. Failure cases of the skeletal mesh generation.

Generally, we observe the prediction of skeletal points is
stable driven by the shape geometry, while connecting the
skeletal points to faithfully capture the shape structure is
more challenging. We show some failure cases of the mesh
generation in Fig. 9. First, we use local connectivity as a
prior to initialize the edge connections of the graph. How-
ever, the local connectivity is not always true but based on
the assumption that the point cloud has a relatively distin-
guishable structure. As shown in Fig. 9 (a), solely using

local connectivity cannot enforce all the connections to be
located inside the shape, leading to inconsistent structures
with the original shape. Giving additional inside/outside la-
bels as supervision like [2, 3] would be a potential solution.

Second, although we use some strategies to make the
mesh generation more reliable, some results still have un-
smooth or incorrect structures, especially when the point
cloud is noisy and sparse, as shown in Fig. 9 (b)(c)(d). On
the one hand, without ground truth data, this is an inherent
challenge for the unsupervised learning to exactly capture
the detailed shape geometry. On the other hand, the link
prediction of GAE is only based on the correlations of the
skeletal points in the latent space, of which learned features
remain not fully explained. Incorporating explicit topologi-
cal constraints in the network would help improve the mesh
quality.

References
[1] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat

Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis
Savva, Shuran Song, Hao Su, et al. Shapenet: An information-
rich 3d model repository. arXiv preprint arXiv:1512.03012,
2015. 3

[2] Zhiqin Chen and Hao Zhang. Learning implicit fields for gen-
erative shape modeling. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
5939–5948, 2019. 5

[3] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna,
William T Freeman, and Thomas Funkhouser. Learning shape
templates with structured implicit functions. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 7154–7164, 2019. 5

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778, 2016. 2

[5] Jingwei Huang, Hao Su, and Leonidas Guibas. Robust water-
tight manifold surface generation method for shapenet mod-
els. arXiv preprint arXiv:1802.01698, 2018. 3

[6] Pan Li, Bin Wang, Feng Sun, Xiaohu Guo, Caiming Zhang,
and Wenping Wang. Q-mat: Computing medial axis trans-
form by quadratic error minimization. ACM Transactions on
Graphics (TOG), 35(1):1–16, 2015. 3

[7] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in neural informa-
tion processing systems, pages 5099–5108, 2017. 1

[8] Phi Vu Tran. Learning to make predictions on graphs with
autoencoders. In 2018 IEEE 5th International Conference on
Data Science and Advanced Analytics (DSAA), pages 237–
245. IEEE, 2018. 3

[9] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,
Chengqi Zhang, and S Yu Philip. A comprehensive survey
on graph neural networks. IEEE Transactions on Neural Net-
works and Learning Systems, 2020. 2

