
Real-Time High-Resolution Background Matting Supplementary Material

Shanchuan Lin* Andrey Ryabtsev* Soumyadip Sengupta
Brian Curless Steve Seitz Ira Kemelmacher-Shlizerman

University of Washington
{linsh,ryabtsev,soumya91,curless,seitz,kemelmi}@cs.washington.edu

Backbone

Base Refiner

Input
6 ✕ H ✕ W

Input
Downsampled
6 ✕ H/c ✕ W/c

Coarse
Output

1+3+1+32 ✕ H/c ✕ W/c

ASPP Decoder

Coarse Results Upsampled
Concat with Input Downsampled
1+3+32+6 ✕ H/2 ✕ W/2

Refined
Output

1+3 ✕ H ✕ W

Skip Connections
Bilinear Upsampling

Background

Source

Foreground
Residual

Alpha

Alpha

Foreground
Residual

Error Map

Hidden

Crop Patch
8 ✕ 8 

Replace Patch
4 ✕ 4

Alpha Patch
Foreground Residual Patch

Coarse Output Refined OutputInput

Foreground

Composite

Composition

Fgr Residual + Source

Alpha ✕ Foreground
 

Figure 1: Network architecture. The diagram is repeated in supplementary for clarity. Gbase (blue) operates on the downsampled input to
produce coarse-grained results and an error prediction map. Grefine (green) selects error-prone patches and refines them to the full resolution.

A. Overview
We provide additional details in this supplementary. In

Sec. B, we describe the details of our network architec-
ture and implementation. In Sec. C, we clarify our use of
keywords for crawling background images. In Sec. D, we
explain how we train our model and show details of our data
augmentations. In Sec. E, we show additional metrics about
our method’s performance. In Sec. F, we show all the qual-
itative results used in our user study along with the average
score per sample.

B. Network
B.1. Architecture

Backbone Both ResNet and MobileNetV2 are adopted
from the original implementation with minor modifications.
We change the first convolution layer to accept 6 channels
for both the input and the background images. We follow
DeepLabV3’s approach and change the last downsampling
block with dilated convolutions to maintain an output stride
of 16. We do not use the multi-grid dilation technique pro-
posed in DeepLabV3 for simplicity.

ASPP We follow the original implementation of ASPP
module proposed in DeepLabV3. Our experiment suggests
that setting dilation rates to (3, 6, 9) produces the better
results.

*Equal contribution.

Decoder

CBR128 - CBR64 - CBR48 - C37

”CBRk” denotes k 3×3 convolution filters with same
padding without bias followed by Batch Normalization and
ReLU. ”Ck” denotes k 3×3 convolution filters with same
padding and bias. Before every convolution, decoder uses
bilinear upsampling with a scale factor of 2 and concate-
nates with the corresponding skip connection from the
backbone. The 37-channel output consists of 1 channel of
alpha αc, 3 channels of foreground residual FR

c , 1 channel
of error mapEc, and 32 channels of hidden featuresHc. We
clamp αc and Ec to 0 and 1. We apply ReLU on Hc.

Refiner

First stage: C*BR24 - C*BR16
Second stage: C*BR12 - C*4

”C*BRk” and ”C*k” follow the same definition above
except that the convolution does not use padding.

Refiner first resamples coarse outputs αc, FR
c , Hc, and

input images I , B to 1
2 resolution and concatenates them as

[n×42× h
2 ×

w
2 ] features. Based on the error predictionEc,

we crop out top k most error-prone patches [nk×42×8×8].
After applying the first stage, the patch dimension becomes
[nk × 16 × 4 × 4]. We upsample the patches with nearest

1



upsampling and concatenate them with patches at the corre-
sponding location from I and B to form [nk × 22× 8× 8]
features. After the second stage, the patch dimension be-
comes [nk× 4× 4× 4]. The 4 channels are alpha and fore-
ground residual. Finally, we bilinearly upsample the coarse
αc and FR

c to full resolution and replace the refined patches
to their corresponding location to form the final output α
and FR.

B.2. Implementation
We implement our network in PyTorch [1]. The patch

extraction and replacement can be achieved via the native
vectorized operations for maximum performance. We find
that PyTorch’s nearest upsampling operation is much faster
on small-resolution patches than bilinear upsampling, so we
use it when upsampling the patches.

C. Dataset
VideoMatte240K The dataset contains 484 video clips,

which consists a total of 240,709 frames. The average
frames per clip is 497.3 and the median is 458.5. The
longest clip has 1500 frames while the shortest clip has
124 frames. Figure 2 shows more examples from Video-
Matte240K dataset.

Figure 2: More examples from VideoMatte240K dataset.

Background The keywords we use for crawling back-
ground images are:

airport interior attic bar interior
bathroom beach city

church interior classroom interior empty city
forest garage interior gym interior

house outdoor interior kitchen
lab interior landscape lecture hall
mall interior night club interior office
rainy woods rooftop stadium interior

theater interior train station warehouse interior
workplace interior

D. Training
Table 1 records the training order, epochs, and hours of

our final model on different datasets. We use 1×RTX 2080
TI when training only the base network and 2×RTX 2080
TI when training the network jointly.

Dataset Network Epochs Hours

VideoMatte240K Gbase 8 24
VideoMatte240K Gbase +Grefine 1 12
PhotoMatte13K Gbase +Grefine 25 8
Distinctions Gbase +Grefine 30 8

Table 1: Training epochs and hours on different datasets. Time
measured on model with ResNet-50 backbone.

Additionally, we use mixed precision training for faster
computation and less memory consumption. When using
multiple GPUs, we apply data parallelism to split the mini-
batch across multiple GPUs and switch to use PyTorch’s
Synchronized Batch Normalization to track batch statistics
across GPUs.

D.1. Training augmentation
For every alpha and foreground training sample, we ro-

tate to composite with backgrounds in a ”zip” fashion to
form a single epoch. For example, if there are 60 train-
ing samples and 100 background images, a single epoch is
100 images, where the 60 samples first pair with the first
60 background images, then the first 40 samples pair with
the rest of the 40 background images again. The rotation
stops when one set of images runs out. Because the datasets
we use are very different in sizes, this strategy is used to
generalize the concept of an epoch.

We apply random rotation (±5deg), scale (0.3∼1), trans-
lation (±10%), shearing (±5deg), brightness (0.85∼1.15),
contrast (0.85∼1.15), saturation (0.85∼1.15), hue (±0.05),
gaussian noise (σ2 ≤0.03), box blurring, and sharpen-
ing independently to foreground and background on ev-
ery sample. We then composite the input image using
I = αF + (1− α)B.

We additionally apply random rotation (±1deg), transla-
tion (±1%), brightness (0.82∼1.18), contrast (0.82∼1.18),
saturation (0.82∼1.18), and hue (±0.1) only on the back-
ground 30% of the time. This small misalignment between
input I and background B increases model’s robustness on
real-life captures.

We also find creating artificial shadows increases
model’s robustness because subjects in real-life often cast
shadows on the environment. Shadows are created on I by
darkening some areas of the image behind the subject fol-
lowing the subject’s contour 30% of the time. Examples of
composited images are shown in Figure 3. The bottom row
shows examples of shadow augmentation.

2



Figure 3: Training samples with augmentations. Bottom row are
samples with shadow augmentation. Actual samples have different
resolutions and aspect ratios.

D.2. Testing augmentation
For AIM and Distinctions, which have 11 human test

samples each, we pair every sample with 5 random back-
grounds from the background test set. For PhotoMatte85,
which has 85 test samples, we pair every sample with only
1 background. We use the method and metrics described in
[2] to evaluate the resulting sets of 55, 55, and 85 images.

We apply a random subpixel translation (±0.3 pixels),
random gamma (0.85∼1.15), and gaussian noise (µ =
±0.02, 0.08 ≤ σ2 ≤ 0.15) to background B only, to simu-
late misalignment.

The trimaps used as input for trimap-based methods and
for defining the error metric regions are obtained by thresh-
olding the grouth-truth alpha between 0.06 and 0.96, then
applying 10 iterations of dilation followed by 10 iterations
of erosion using a 3×3 circular kernel.

E. Performance
Table 2 shows the performance of our method on two

Nvidia RTX 2000 series GPUs: the flagship RTX 2080 TI
and the entry-level RTX 2060 Super. The entry-level GPU
yields lower FPS but is still within an acceptable range for
many real-time applications. Additionally, Table 3 shows
that switching to a larger batch size and a lower precision
can increase the FPS significantly.

F. Additional Results
In Figures 4, 5, 6, we show all 34 examples in the user

study, along with their average rating and results by differ-
ent methods. Figure 7 shows the web UI for our user-study.

References
[1] Adam Paszke, S. Gross, Francisco Massa, A. Lerer, J. Brad-

bury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
Alban Desmaison, Andreas Köpf, E. Yang, Zach DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, B.
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library.
ArXiv, abs/1912.01703, 2019. 2

GPU Backbone Reso FPS

RTX 2080 TI
ResNet-50 HD 60.0

4K 33.2

MobileNetV2 HD 100.6
4K 45.4

RTX 2060 Super
ResNet-50 HD 42.8

4K 23.3

MobileNetV2 HD 75.6
4K 31.3

Table 2: Performance on different GPUs. Measured with batch
size 1 and FP32 precision.

Backbone Reso Batch Precision FPS

MobileNetV2
HD

1 FP32 100.6
8 FP32 138.4
8 FP16 200.0

4K 8 FP16 64.2

Table 3: Performance using different batch sizes and precisions.
Measured on RTX 2080 TI.

[2] Christoph Rhemann, Carsten Rother, Jue Wang, Margrit
Gelautz, Pushmeet Kohli, and Pamela Rott. A perceptu-
ally motivated online benchmark for image matting. In 2009
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1826–1833. IEEE, 2009. 3

3



+2.0

-3.3

+1.8

+0.1

+3.3

+9.0

+7.5

+7.1

-2.6

-1.3

-0.8

2.4

Input Ours BGM BGMa Trimap FBA Trimap FBAauto Score
Background-based methods Manual trimap Segmentation-morph trimap

Figure 4: Additional qualitative comparison (1/3). Average user ratings between Ours and BGM are included. A score of -10 denotes
BGM is ”much better”, -5 denotes BGM is ”slightly better”, 0 denotes ”similar”, +5 denotes Ours is ”slightly better”, +10 denotes Ours is
”much better”. Our method receives an average 3.1 score.

4



-5.5

+2.9

+2.3

+3.8

+3.6

-3.6

-2.4

+8.8

+6.0

+5.6

+6.3

Input Ours BGM BGMa Trimap FBA Trimap FBAauto Score
Background-based methods Manual trimap Segmentation-morph trimap

Figure 5: Additional qualitative comparisons (2/3)

5



+7.4

+8.8

+7.4

+7.0

-3.5

+6.8

-3.3

+5.8

+5.1

+0.1

+3.8

Input Ours BGM BGMa Trimap FBA Trimap FBAauto Score
Background-based methods Manual trimap Segmentation-morph trimap

Figure 6: Additional qualitative comparisons (3/3)

6



Figure 7: The web UI for our user study. Users are shown the original image and two result images from Ours and BGM methods. Users
are given the instruction to rate whether one algorithm is ”much better”, ”slightly better”, or both as ”similar”.

7


