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S1. Outline
In this supplementary, we provide additional details to en-

able reproducibility, and additional visualizations and results
to complement the main findings in the paper. In Section S2,
we specify the creation of the Materials dataset. In Section
S3, we detail the experimental setup for the classification
robustness experiments. In Section S4, we describe the im-
plementation and parameters used for style transfer, and we
show visualizations of these methods in Section S5. In Sec-
tion S6, we extend the discussion in Section 4 of the main
paper by analyzing the effect of stylization strength versus
robustness. In Section S7, we visualize the power spectra
of stylized images and compare them to natural images. Fi-
nally, in Section S8, we frame model robustness as domain
generalization and discuss how domain-invariance can affect
model robustness.

S2. Materials Dataset Details
In Section 3.2 of the main paper, we briefly described

the two primary datasets on which we focused our exper-
iments. PACS [7] is a standard benchmark dataset while
Materials is a novel dataset of photographs and paintings
that was created by sampling image patches from existing
datasets with material annotations. In this section, we give
additional information on the creation of Materials. This
dataset is released for reproducibility at https://github.
com/hubertsgithub/style_painting_robustness

Natural photographs. We acquired image patches from
OpenSurfaces[1], COCO stuff [3], and MINC-2500 [2]. To cre-
ate image patches for image classification from segmentation an-
notations, we constructed bounding boxes around segments, and
cropped out these bounding boxes to form image patches. We con-
structed square bounding boxes with side length equal to 150% of
the minimum side length of tight bounding box around the segment.
Non-tight bounding boxes are used since it is important to include
some context for the patch. We also sampled from MINC-2500
which already contains annotated image patches that do not require
additional processing. Image crops that extend beyond the bound-
ary of the full image are padded to square with ImageNet mean
padding, and all final images patches are resized to 224×224. We
sampled from OpenSurfaces and MINC first, before sampling from
COCO if necessary. We created subsets of data of up to 60K photos,

and each subset was created to be as-class-balanced-as-possible.
For illustration, we provide per-class counts for two such subsets
of data in Table 5.

Natural-10K Count Natural-60K Count
Ceramic 1000 Ceramic 3132**
Fabric 1000 Fabric 8006
Foliage 1000 Foliage 8006
Glass 1000 Glass 7216**
Liquid 1000 Liquid 7174**
Metal 1000 Metal 7204**
Paper 1000 Paper 3258**
Skin 1000 Skin 2276**
Stone 1000 Stone 5716**
Wood 1000 Wood 8006

Table 5: Training datasets are sampled to be as class-
balanced as possible. ** indicates that all training samples of
that category are included in the training set, and no further
samples exist. Natural-10K is a subset of Natural-60K. The
test set contains 200 samples of each category.

Paintings. We sample paintings across the same material cate-
gories as above from [12]. We only sample patches that are at least
128×128 pixels in area to avoid very low-resolution annotations.
The image patches are padded and resized in the same manner as
above, and data is also sampled to be as-class-balanced-as-possible.

S3. Classification Parameters
For all classification experiments, we use the following setup.

Code is released for reproducibility at https://github.com/
hubertsgithub/style_painting_robustness

• Network architecture: ResNet18, ImageNet pretrained.
• Training hyperparameters: 30 epochs with initial learning

rate (LR) 1e-3, LR reduced to 1e-4 at epoch 24. The LR of
the classification layer is increased by 10×.

• Optimizer: SGD with 0.9 momentum.
• Training data augmentation: horizontal flipping, random scal-

ing, color jitter, and ImageNet normalization.
• For experiments that train a model on both photos and styl-

ized photos, all photos are stylized exactly once offline and
included in the training set as an independent image from the
original photo.

• Evaluation accuracies are averaged over 3 independent runs
for each experiment.
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Our results do not appear sensitive to the choice of training
hyperparameters. Therefore, we train all networks with this config-
uration and evaluate the final model after training. Our experiments
suggest that this training schedule is sufficient for convergence
without overfitting across all datasets we experimented with. In-
creasing training epochs to 100 or more does not improve results.
Increasing number of training epochs is required if starting from
random initialization, but ImageNet pretraining is standard practice
so we do not extensively experiment with random initialization.

S4. Style Transfer Parameters
For all applications of style transfer used in this work, we use

pretrained models from publicly available implementations. The
sources are provided here:

• AdaIN [6]: https://github.com/bethgelab/
stylize-datasets

• ETNet [10]: https://github.com/zhijieW94/
ETNet

• TPFR [11]: https://github.com/nnaisense/
conditional-style-transfer

• SACL [9]: https://github.com/CompVis/
adaptive-style-transfer

Our initial experiments showed that applying style transfer
at 224×224 resolution yielded visually poor results (except for
AdaIN). Therefore, we apply style transfer at a higher resolution
and downsample the final result to 224×224. For AdaIN, ETNet,
and SACL, we apply style transfer at 768×768 resolution. For
TPFR, we apply style transfer at 512×512 instead of 768×768
due to GPU memory constraints. All other hyperparameters are
set to the default settings found in the implementations for each
respective method.

S5. Visualizations of Stylized Photos
We show examples of images stylized by various style transfer

methods on PACS (Fig. 10) and Materials (Fig. 11). The visual-
izations also include examples of intradomain stylization in which
images are stylized by photos instead of by paintings. Notice that
intradomain stylization yields stylizations that are, in general, vi-
sually similar to stylizations with painting style images. Overall,
stylizations across all methods are holistically similar to natural
paintings.

S6. Style Distance vs Robustness
In Section 4.2, we found that arbitrary stylization with style

images that share the same semantic content as the content image
(“intraclass stylization”) results in lower gains in robustness. Since
images with similar semantic content may be more visually similar,
this suggests that intraclass stylization will lead to less stylized
images, i.e. weaker augmentation. To verify this, we measured style
differences via the Gram matrix distance between stylized images
and their original counterparts. Table 6 summarizes differences on
PACS. While intraclass stylization does result in smaller differences
in style for each method, the Gram matrix distance across methods
is not necessarily correlated with gains in robustness. For example,
ETNet produces the largest style differences overall, but AdaIN

improves robustness more (Fig. 3,4). As such, the strength of
stylization alone is not indicative of the downstream robustness
learned by models trained on these images.

Method Painting Intradomain Intradomain
(Intraclass)

AdaIN 1.58±0.93 1.28±0.79 1.16±0.85
ETNet 2.33±1.09 2.13±1.04 1.81±1.03
TPFR 1.52±0.90 1.38±0.87 1.27±0.91

Table 6: Style (Gram Matrix) Distance. Gram matri-
ces computed from ImageNet pretrained ResNet18 features
on PACS. Mean distance between (image, stylized
image) pairs is reported. ↑ distance implies ↑ style differ-
ence. ± denotes standard deviation across 1.5K pairs.

S7. Power Spectra of Different Image Types
In Section 6 of the main paper, we found that SACL improves

robustness against noise with imperceptible high frequency signals
in the stylized images. The results are shown in Table 7. Here we
show the power spectra of stylized images and compare them to the
spectra for natural photos and natural paintings. The radial power
spectrum for an image is computed as:

power(r) = ||Xr||2

where Xr = mean√
i2+j2∈R(r)

||Xij ||

Xij are the frequency components given by the 2D discrete Fourier
transform. Since (i, j) are discrete, the radial frequency compo-
nent Xr is computed as an average over ||Xij || for (i, j) that fall
in a bin R(r). In Fig. 9, we visualize the mean radial power
spectra for natural photos, natural paintings, and SACL-stylized
photos. We observe that stylized photos contain higher magnitude
high-frequency components relative to natural photos and natu-
ral paintings. As noted in Section 6 of the main paper, reducing
the magnitude of sufficiently high-frequency components does not
affect the perceptual quality of images.

Figure 9: Power Spectrum of Images. Left: PACS, Right:
Materials. The plots depict the mean power spectrum for
different sets of images. Photos stylized by SACL have
larger magnitude high frequency components than natural
photos or natural paintings.
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Method Noise Blur Weather Digital OOD
Materials (30K Samples/Domain)

Photo-Only 43.70±0.65 58.76±0.14 55.25±0.33 61.20±0.69 41.33±0.62
Photo + SACL 61.87±0.16 64.36±0.20 57.49±0.24 66.55±0.17 34.54±0.91
Photo + Painting 49.82±0.56 61.03±0.13 56.69±0.10 64.15±0.14 43.92±0.47
Photo+SACL (LF) 45.82±1.36 64.24±0.39 57.06±0.13 66.37±0.29 36.92±1.15
Photo+Painting (LF) 44.95±0.66 60.87±0.29 56.82±0.23 63.69±0.46 41.21±0.56

PACS (1.5K Samples/Domain)
Photo-Only 62.64±1.48 72.75±0.04 83.24±0.22 86.33±0.14 82.57±0.00
Photo + SACL 85.98±0.56 84.61±0.15 89.73±0.33 88.74±0.48 77.43±0.84
Photo + Painting 68.83±0.83 75.80±0.95 86.88±0.66 87.07±0.14 85.43±0.70
Photo+SACL (LF) 77.55±2.60 85.4±0.11 88.93±0.22 88.53±0.15 77.43±0.47
Photo+Painting (LF) 71.16±1.31 75.97±0.71 86.82±0.37 87.35±0.36 83.71±0.40

Table 7: Robustness without High Frequency Signals. “LF” denotes filtered low frequency images. Photos are always
unfiltered. Filtering invisible high frequency components mainly impacts noise robustness. (blue) Filtering stylized photos
significantly reduces noise robustness while (red) filtering paintings has a relatively smaller effect. ± indicates standard
deviations over 3 runs.

S8. Domain-Invariant Feature Learning
Our results from Section 5 of the main paper provide evidence

that models can learn more robust feature representations from the
addition of paintings to a dataset of photographs. We can take this
further by explicitly enforcing similar (or domain-invariant) feature
representations across photos and paintings. Domain-invariance
is a common approach to the problem of domain generalization,
where models are trained on multiple domains with the goal of
generalizing to unseen domains, e.g. [5, 8]. In our setting, we
can consider images with common corruptions to be the set of
unseen domains. Perfect domain-invariant feature extraction can be
harmful if it prevents useful features in photos from being extracted
due to an underrepresentation of such features in paintings. Since
the target task is recognition of photos, losing robust photo-specific
signals can be detrimental. Therefore, we explore the following:

• Hypothesis H1S: Explicitly learning domain-invariance from
paintings and photos may negatively impact model robust-
ness.

We use an adversarial domain discriminator to learn domain
invariant features [4, 8]. In Table 8, we find that explicitly learning
domain invariant features from paintings results in lower robustness
than unrestricted feature learning with paintings. However, learning
domain-invariant features does still improve robustness over the
photo-only baseline. Existing work in domain generalization has
shown that domain-invariance is an effective method for learning
to recognize images from unseen domains, e.g. [8]. Our finding
here suggests that in the special case of domain generalization to
corrupted versions of natural photographs, it is advantageous to
retain photo-specific features for recognition. This is consistent
with our hypothesis and discussion above – an underrepresentation
of any particular photo-specific features in paintings can result in
such features being ignored entirely when domain-invariance is
enforced, even if such features are useful for robust recognition.
Answer to H1S: Explicitly learning domain-invariant features
from paintings negatively impacts model robustness with respect
to unrestricted feature learning with paintings. However, domain-
invariant features do still improve robustness relative to photos
only.

Method MEAN Noise Blur Weather Digital
Materials (30K Samples/Domain)

Photo-Only 54.73 43.71 58.76 55.25 61.20
Photo + Painting 57.92 49.82 61.03 56.68 64.15
Photo + Painting (DA) 55.99 46.97 59.60 54.51 62.90

PACS (1.5K Samples/Domain)
Photo-Only 76.16 62.64 72.75 83.24 86.33
Photo + Painting 78.99 68.04 74.72 86.26 86.92
Photo + Painting (DA) 77.44 68.86 72.59 84.09 84.23

Table 8: Effect of Domain-Invariant Features. “DA”
refers to feature learning with an adversarial domain dis-
criminator loss [4]. Learning domain-invariant features (red)
reduces robustness relative to unrestricted feature learning
from paintings (blue), but still improves robustness over
photo-only.

S9. Additional Architectures
We expect our findings to hold across architectures and datasets.

As a sanity check, we have extended Table 2 with two additional
architectures. The results (Table 9) follow similar trends to those
found in Table 2. For example, SACL outperforms both AdaIN and
Paintings on Noise.
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Resnet-18
Method Noise Blur Weather Digital

Materials (30K Samples/Domain)
Photo-Only 43.70±0.65 58.76±0.14 55.25±0.33 61.20±0.69
Photo + AdaIN 47.33±0.22 65.09±0.21 61.78±0.18 61.41±0.16
Photo + SACL 61.87±0.16 64.36±0.20 57.49±0.24 66.55±0.17
Photo + Painting 49.82±0.56 61.03±0.13 56.69±0.10 64.15±0.14

PACS (1.5K Samples/Domain)
Photo-Only 62.64±1.48 72.75±0.04 83.24±0.22 86.33±0.14
Photo + AdaIN 70.17±1.70 81.18±0.20 88.37±0.23 89.32±0.19
Photo + SACL 85.98±0.56 84.61±0.15 89.73±0.33 88.74±0.48
Photo + Painting 68.83±0.83 75.80±0.95 86.88±0.66 87.07±0.14

WideResnet-50-2
Method Noise Blur Weather Digital

Materials (30K Samples/Domain)
Photo + AdaIN 57.80±1.79 73.77±0.11 67.75±0.51 66.96±0.06
Photo + SACL 69.39±0.72 70.00±0.34 64.00±0.54 73.05±0.30
Photo + Painting 60.72±0.83 68.09±0.49 61.15±0.23 70.98±0.24

PACS (1.5K Samples/Domain)
Photo + AdaIN 82.05±1.33 86.89±0.64 93.98±0.15 94.39±0.30
Photo + SACL 93.79±1.35 89.64±0.36 95.19±0.17 93.63±0.11
Photo + Painting 83.92±1.81 85.38±0.27 94.19±0.08 92.63±0.24

Densenet-121
Method Noise Blur Weather Digital

Materials (30K Samples/Domain)
Photo + AdaIN 54.32±0.23 71.08±0.24 67.31±0.37 66.47±0.13
Photo + SACL 67.22±0.16 68.89±0.16 63.08±0.33 71.87±0.62
Photo + Painting 54.83±1.20 68.21±0.38 61.29±0.39 70.66±0.13

PACS (1.5K Samples/Domain)
Photo + AdaIN 76.96±4.12 85.79±0.50 94.96±0.13 92.34±0.19
Photo + SACL 91.33±0.28 88.92±0.37 94.18±0.49 94.12±0.54
Photo + Painting 76.65±2.22 83.22±0.19 94.00±0.62 91.72±0.14

Table 9: Per-Corruption Accuracy (Additional Architectures). Trends across different architectures are generally consistent.
For example, SACL (blue) greatly outperforms AdaIN and paintings (red) for noise robustness. ± indicates standard deviation
over 3 runs.
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Figure 10: Stylized Photos (PACS) (1/2). Intradomain refers to stylization with photos as style images instead of paintings as
style images. SACL is a learned style transfer method that is applied with different models pretrained to transfer the style of
different artists. (Continued on next page)
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TPFR

TPFR
(Intradomain)

SACL

Figure 10: Stylized Photos (PACS) (2/2). Intradomain refers to stylization with photos as style images instead of paintings as
style images. SACL is a learned style transfer method that is applied with different models pretrained to transfer the style of
different artists.
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Figure 11: Stylized Photos (Materials) (1/2). Intradomain refers to stylization with photos as style images instead of paintings
as style images. SACL is a learned style transfer method that is applied with different models pretrained to transfer the style of
different artists. (Continued on next page)
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Figure 11: Stylized Photos (Materials) (2/2). Intradomain refers to stylization with photos as style images instead of paintings
as style images. SACL is a learned style transfer method that is applied with different models pretrained to transfer the style of
different artists.
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