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1. Multivariable Integration with AutoInt

We consider an implicit neural representation realized by

a neural network with parameters θ. The network maps low-

dimensional input coordinates to a low-dimensional output

Φθ : Rdin 7→ R
dout , and we assume that the network admits

a (sub-)gradient with respect to its input x ∈ R
din . We de-

note by Ψi
θ = ∂Φθ/∂xi the derivative of the network output

with respect to the input coordinate xi, and, as described in

the main text, we call Ψi
θ the grad network and Φθ the inte-

gral network.

By the fundamental theorem of calculus, the grad net-

work and integral network are related as

Φθ(x) =

∫

∂Φθ

∂xi

(x) dxi =

∫

Ψi
θ(x) dxi. (1)

As a corollary we have that definite integrals can be com-

puted by two evaluations of the integral network:

∫ bi

ai

Ψi
θ(x) dxi = Φθ(x)

∣

∣

∣

xi=bi
− Φθ(x)

∣

∣

∣

xi=ai

. (2)

Now, we will extend this result to multiple integrations.

First, we let Ψi,j
θ = ∂Ψi

θ/∂xj be the partial derivative with

respect to xj such that

Ψi
θ =

∫

∂Ψi
θ

∂xj

(x) dxj =

∫

Ψi,j
θ (x) dxj . (3)

*Equal contribution.

http://www.computationalimaging.org/publications/

automatic-integration/

Then we can express the double integral as

∫ bi

ai

∫ bj

aj

Ψi,j
θ (x) dxj dxi

=

∫ bi

ai

Ψi
θ(x)

∣

∣

∣

xj=bj
−Ψi

θ(x)
∣

∣

∣

xj=aj

dxi

=

(

Φθ(x)
∣

∣

∣

xj=bj
− Φθ(x)

∣

∣

∣

xj=aj

)

∣

∣

∣

xi=bi

−

(

Φθ(x)
∣

∣

∣

xj=bj
− Φθ(x)

∣

∣

∣

xj=aj

)

∣

∣

∣

xi=ai

. (4)

Equation 4 can be further simplified with a slight abuse of

notation by letting Φθ(x)
∣

∣

∣

xi=ai,xj=aj

= Φθ(ai, aj), result-

ing in

∫ bi

ai

∫ bj

aj

Ψi,j
θ (x) dxj dxi = Φθ(bi, bj)− Φθ(bi, aj)

− Φθ(ai, bj) + Φθ(ai, aj). (5)

Stated otherwise, a definite integral over two dimensions

can be computed with four evaluations of the integral net-

work at the given bounds.

This result can be extended to n dimensions with the fol-

lowing formula [6].

∫ b1

a1

· · ·

∫ bn

an

Ψ1,...,n
θ (x) dxn · · · dx1

=

1
∑

ǫ1,...,ǫn=0

(−1)ǫ1+···+ǫnΦθ(ǫ1a1 + ǭ1b1, . . . , ǫnan + ǭnbn),

(6)

with ǭi = 1− ǫi. Thus for n = 3, we would have

Φθ(bi, bj , bk)− Φθ(bi, aj , bk)− Φθ(ai, bj , bk)

+ Φθ(ai, aj , bk)− Φθ(bi, bj , ak) + Φθ(bi, aj , ak)

+ Φθ(ai, bj , ak)− Φθ(ai, aj , ak). (7)
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Overall, using AutoInt for multivariable integration fol-

lows a similar procedure to evaluating a single integral as

described in the main text. First, one constructs the grad

network by taking partial derivatives of the integral network

with respect to each of the variables of integration. Then,

after training, the integral network is reassembled from the

parameters θ and evaluated at the bounds of the domain as

described by Equation 6.

2. Deriving the VRE Approximation and

Quadrature

2.1. Piecewise Constant VRE

Our approximation of the volume rendering equation

(VRE), can be viewed as a Riemann integral using N piece-

wise constant sections:

C̃(r) =

N
∑

i=1

σ̄i c̄iT̄i δi, (8)

where δi = ti − ti−1 is the length of the section i along

the ray. The density σ̄i and radiance c̄i of each section are

defined as:

σ̄i = δ−1

i

∫ ti

ti−1

σ(t) dt, (9)

and

c̄i = δ−1

i

∫ ti

ti−1

c(t) dt, (10)

and the transmittance as

T̄i = exp



−

i−1
∑

j=1

σ̄jδj



 . (11)

After substituting the terms defined in Equa-

tions (9),(10) and (11) into Equation (8) and simplifying,

we obtain the following expression for the piecewise

volume rendering equation:

C̃(r) =

N
∑

i=1

δ−1

i

∫ ti

ti−1

σ(t) dt ·

∫ ti

ti−1

c(t) dt (12)

·

i−1
∏

j=1

exp

(

−

∫ tj

tj−1

σ(s) ds

)

.

2.2. Calculation via Quadrature

To obtain the quadrature rule proposed by Max [3], used

in the NeRF model, we first note that in the limit of σ̄iδi →
0 the following Taylor expansion holds

exp(σ̄iδi)
σ̄iδi→0
= 1 + σ̄iδi +O(σ̄iδi). (13)

That is, using the definition of σ̄i from Equation (9) we have

1− exp(−σ̄iδi) ≈ σ̄iδi =

∫ ti

ti−1

σ(t) dt, (14)

yielding the quadrature

C̃(r) =

N
∑

i=1

T̄i (1− exp(−σ̄iδi)) c̄i (15)

3. AutoInt Implementation

3.1. Overview

In the AutoInt framework, we start by specifying the ar-

chitecture of the integral network: the number of layers,

features, the type of non-linearities, and the input parame-

terization. Our implementation of AutoInt relies on a eval-

uating computational graphs, where dependencies are mod-

eled using directed acyclic graphs (DAGs). With this graph-

based representation, we create an automated pipeline for

instantiating grad networks from integral networks, and we

develop an efficient procedure for evaluating grad networks

during training.

DAGs to represent computational graphs. Our Au-

toInt implementation internally maintains the computa-

tional graph of neural networks as a Directed Acyclic

Graphs (DAG). Most nodes in the graph represent compu-

tational operators and there are two kinds of leaf nodes: (1)

an input node with respect to which we can take the deriva-

tive of the graph and (2) a constant input node. Directed

edges represent dependencies between nodes and point to-

wards dependencies (i.e., other nodes to be computed first).

Hence, nodes of in-degree zero are final results of the com-

putation graph.

Building the grad network. To instantiate a grad net-

work, AutoInt performs auto differentiation on the DAG of

the integral network. Each node is called in a topological

order and provides its own derivative. This recursive chain

of calls builds the computation graph of the grad network.

Evaluating the grad network. Once the grad network is

built it can be evaluated using a reverse topological ordering

of its nodes: starting from the leaves and tracing computa-

tion back to the root(s). Note that this procedure is different

than backpropagation, where intermediate results from the

forward pass are stored in order to evaluate the graph asso-

ciated with the backward pass. In AutoInt, given the grad

network is a separate entity from the integral network, the

intermediate results from the forward pass are unavailable.

However, the grad network can still be computed efficiently

by reusing computations from the “legs” of the network,

since these nodes share weights and perform the same com-

putations (see Figure 1). This is done by maintaining a lexi-

cographic ordering between nodes of same in-degree in the
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a "leg"

computation can be reused

from one leg to another

Figure 1. Visualizations of integral and grad networks generated with the AutoInt graph implementation. Directed acyclic graphs corre-

sponding to the integral network (left) and grad network (right) consist of computational nodes and their dependencies. Here, arrows point

from a node to each of its dependencies, indicating which node should be computed first. The grad network has a tree-like structure, and

computes the partial derivative of the integral network with respect to one of its inputs. Nodes within the “legs” of the grad network appear

multiple times, thus these computations can be re-used during a forward pass in order to improve performance.

topological ordering. The lexicographic ordering is defined

by the order in which nodes were created during differen-

tiation of the integral network: nodes created last appear

first in the ordering. Thus the evaluation of the grad net-

work in forward mode proceeds by calling each node in this

lexicographic-topological ordering. Nodes save their com-

putation in a cumulative fashion; as the legs of the network

are computed, the last results are kept to be reused in other

legs.

Training the grad network. The weights of the grad net-

work are trained with backpropagation. During the evalu-

ation of the grad network, computations are also saved for

the backward pass performed by the backpropagation algo-

rithm. The weights of the grad network are then updated

with Adam [1], a variant of SGD.

3.2. Implementation and Results

We implemented AutoInt in Python and PyTorch [7],

and we used the Python Networkx library to maintain the

data structures forming the backend of our computational

graphs. At the core of our AutoInt implementation is a cus-

tom AutoDiff tool that acts on computational nodes defined

by the framework. After an integral network is built using

the computational nodes, it is parsed by our AutoDiff tool,

and the grad network is created. Importantly, each of our

computational nodes wraps a Pytorch module, enabling pa-

rameter sharing within and between the networks. After the

networks are instantiated, it is convenient to use the Pytorch

AutoDiff to perform backpropagation and weight updates

during training. Reassembling the integral network is triv-

ial due to the weight sharing mechanism; the integral and

grad network parameters always match as they are updated

during training.

AutoInt can also be directly implemented in Pytorch,

though with relatively severe performance penalties. To

train the grad network, one would perform the following

steps during each training iteration: (1) compute the out-

put of the integral network, (2) use AutoDiff to calculate

the derivative of the output with respect to the input vari-

able of integration, and (3) perform backpropagation on a

loss calculated using the derivative. This procedure is in-

efficient because, compared to our framework, it requires

an extra forward pass through the integral network, and it

requires re-assembling the grad network at every training

iteration. Our AutoInt implementation compares favorably

to this direct PyTorch implementation. We measure a sav-

ings of over 15% in GPU memory, and a more than 1.8x

speedup in the number of training iterations per second for

the volume rendering task described in the main paper.

4. Supplemental Results

4.1. Sparse-View Computed Tomography

We include supplemental results for the sparse-view

computed tomography task described in the main paper.

Here, we train a grad network on sparse angular projections

(i.e., a subsampled sinogram) of a 2-dimensional phantom.

After training, the integral network is evaluated for all pro-

jection angles to inpaint the missing regions of the sino-

gram. As shown in Figure 2, we find that using the Swish

non-linearity in the integral network results in the best gen-

eralization performance in term of inpainting the unseen

projections. SIREN [8], which uses the sine nonlinearity,

performs well in the densely supervised case, but performs

increasingly degrades for inpainting the sinograms for 8×
and 16× angular subsampling. We also show the perfor-

mance of ReLU and Softplus. Both of these non-linearities
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Figure 2. Supplemental results of AutoInt for computed tomography. Left: illustration of the parameterization. Center: sinograms com-

puted with the integral networks using different nonlinear activation functions. The ground truth (GT) sinogram is subsampled in angle by

4× (top), 8× (middle), and 16× (bottom). The optimized networks are used to interpolate the missing measurements. Using the Swish

activation performs best in these experiments. Right: 1D scanlines of the sinogram centers shows the interpolation behavior of each method

for each subsampling level.

produce relatively noisy inpainted results. ReLU is partic-

ularly unsuited to learning this representation, as its deriva-

tive, which appears in the grad network, has a zero-valued

derivative almost everywhere.

4.2. Supervising the Integral Network

In the main paper, we use AutoInt to supervise the grad

network and then reconstruct the integral network. It is also

possible to directly supervise the integral network, Φθ, to

learn an antiderivative. One way to do this is with a pro-

vided dataset of definite integrals. For example, consider we

wish to learn an antiderivative F (x) over an interval [a, b].
In this case, we can supervise the integral network directly

over definite integrals F (x2) − F (x1) =
∫ x2

x1

f(x)dx for

x1, x2 ∈ [a, b]. Here, the integral network is trained to min-

imize a loss function of the following form.

arg minθ ‖[Φθ(x2)− Φθ(x1)]− [F (x2)− F (x1)]‖
2
2. (16)

We demonstrate training a neural network with Swish non-

linearities to learn a sigmoid function F (x) = 1/(1 + e−x)
from a dataset of randomly sampled definite integrals as de-

scribed by Equation 16. The resulting fit is shown in Fig-

ure 3. The network accurately fits the sigmoid function up

to a scalar constant (which we remove in the visualization

of Figure 3).
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Figure 3. Supervising the integral network with definite integrals.

We set an antiderivative F to be equal to a sigmoid function and

supervise an integral network with values of definite integrals as

described by Equation 16. The network recovers the antiderivative

F up to a scalar constant and is compared to ground truth (we

remove the offset for visualization).

4.3. Results on Captured Data

In Figure 4, we include supplemental results using real

captured data from DeepVoxels [9]. The scenes were

trained on half of the randomly sampled images of the pro-
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vided RGB data and are shown here for a held out test set.

Both AutoInt results using 8 and 32 sections achieve simi-

larly high image quality on these captured scenes.

We also show results from the Local Light Field Fusion

(LLFF) datasets [4] and qualitative comparisons between

NeRF [5] and AutoInt in Figure 5. The LLFF datasets con-

sist of captured, forward-facing image data, and we train

and evaluate all images at a resolution of 378 by 504 pixels.

We train with a batch size of one and otherwise use the same

training parameters as the Blender datasets as described in

the main text. Following the LLFF authors, we partition

the captured images so that 1/8 of the images are used for

the test set. In Table 1, we show quantitative comparisons

between AutoInt and NeRF for the LLFF datasets.

4.4. Synthetic Blender Dataset Scenes

We show extended results that evaluate the effect of

the sampling network for a range of piecewise sections

in the approximate VRE in Figure 6. Additional qualita-

tive comparisons on the synthetic Blender datasets are pro-

vided in Figure 7, where we compare our method to Neu-

ral Volumes [2] and NeRF [5]. Finally, in Table 2 we pro-

vide additional quantitative evaluations using peak signal-

to-noise ratio (PSNR), the structural similarity index mea-

sure (SSIM) [10], and the learned perceptual image patch

similarity (LPIPS) metric [11].
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Figure 4. Supplemental results of AutoInt for real captures. We show qualitative results of AutoInt with 8 and 32 sections on the Statue

and the Globe scenes used in DeepVoxels [9].
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Figure 5. Supplemental results of AutoInt for real captures from the Local Light Field Fusion datasets [4]. We show qualitative results of

AutoInt with 8 and 32 sections on the T-Rex and Flower scenes.

#sections N=2 #sections N=4 #sections N=8 #sections N=16 #sections N=32 #sections N=64

21.48dB 22.07dB 22.44dB 23.49dB 23.35dB 23.92dB 24.59dB 25.16dB 26.04dB 26.51dB 26.58dB 26.94dB

Figure 6. Ablation studies. A view of the Lego scene is shown with a varying number of intervals (N = {2, 4, 8, 16, 32, 64}) without (left

half of the images) and with (right half) the sampling network. PSNR is computed on the 200 test set views.
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PSNR↑
Room Fern Leaves Fortress Orchids Flower T-Rex Horns

NeRF [5] 33.60 26.92 22.50 32.94 21.37 28.57 28.26 29.26

AutoInt (N=8) 28.33 22.11 19.61 28.63 16.85 26.65 24.90 26.01

AutoInt (N=16) 29.97 23.29 18.78 29.53 17.71 27.60 25.58 26.72

AutoInt (N=32) 30.72 23.51 20.84 28.95 17.30 28.11 27.18 27.64

SSIM↑
Room Fern Leaves Fortress Orchids Flower T-Rex Horns

NeRF [5] 0.980 0.903 0.851 0.962 0.800 0.931 0.953 0.947

AutoInt (N=8) 0.941 0.771 0.745 0.896 0.560 0.882 0.888 0.880

AutoInt (N=16) 0.954 0.802 0.712 0.914 0.607 0.903 0.904 0.894

AutoInt (N=32) 0.966 0.810 0.795 0.910 0.583 0.917 0.931 0.908

LPIPS↓
Room Fern Leaves Fortress Orchids Flower T-Rex Horns

NeRF [5] 0.038 0.085 0.103 0.024 0.108 0.057 0.049 0.058

AutoInt (N=8) 0.110 0.276 0.171 0.092 0.313 0.113 0.123 0.213

AutoInt (N=16) 0.102 0.283 0.218 0.086 0.268 0.090 0.107 0.202

AutoInt (N=32) 0.075 0.277 0.156 0.107 0.302 0.075 0.080 0.177

Table 1. Per-scene quantitative results calculated across the test sets of the Local Light Field Fusion datasets [4].
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Figure 7. Qualitative results. We compare the performance of Neural Volumes [2] and NeRF [5] to AutoInt using N = 8 and N = 32

in our approximate volume rendering equation. AutoInt accurately captures view-dependent effects like specular reflections (green boxes)

and reduces render times by greater than 10× relative to NeRF, though with some reduction in overall image quality.
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PSNR↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship

NeRF [5] 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65

NV [2] 28.33 22.58 24.79 30.71 26.08 24.22 27.78 23.93

AutoInt (N=8) 25.60 20.78 22.47 32.33 25.09 25.90 28.10 24.15

AutoInt (N=16) 25.65 21.30 23.95 31.28 25.48 28.05 28.36 24.26

AutoInt (N=32) 25.82 22.02 25.51 31.84 27.26 28.58 28.42 25.18

SSIM↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship

NeRF [5] 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856

NV [2] 0.916 0.879 0.910 0.944 0.880 0.888 0.946 0.784

AutoInt (N=8) 0.928 0.861 0.898 0.974 0.900 0.930 0.948 0.852

AutoInt (N=16) 0.925 0.869 0.909 0.971 0.905 0.947 0.951 0.853

AutoInt (N=32) 0.926 0.885 0.926 0.973 0.929 0.953 0.951 0.869

LPIPS↓
Chair Drums Ficus Hotdog Lego Materials Mic Ship

NeRF [5] 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206

NV [2] 0.109 0.214 0.162 0.109 0.175 0.130 0.107 0.276

AutoInt (N=8) 0.141 0.224 0.148 0.080 0.175 0.136 0.131 0.323

AutoInt (N=16) 0.149 0.221 0.139 0.095 0.171 0.110 0.130 0.320

AutoInt (N=32) 0.149 0.209 0.109 0.088 0.135 0.100 0.127 0.295

Table 2. Per-scene quantitative results calculated across the test sets of the synthetic Blender datasets. These simulated scenes contain

challenging geometries and reflectance properties.
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