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These supplementary materials include the results for
different CIL settings(§A), “strict memory budget” experi-
ments (§B), additional ablation results (§C), additional plots
(§D), more visualization results (§E), and the execution
steps of our source code with PyTorch (§F).

A. Results for Different CIL Settings.

We provide more results on the setting with the same
number of classes at all phases [32] in the second block
(“same # of cls”) of Table S1. For example, N=25 in-
dicates 100 classes evenly come in 25 phases, so 4 new
classes arrive in each phase (including the 0-th phase). Fur-
ther, in this table, each entry represents an accuracy of the
last phase (since all-phase accuracies are not comparable
to our original setting) averaged over 3 runs; and “update
θbase” means that θbase is updated as θbase ← φi � θbase
after each phase. All results are under “strict memory bud-
get” and “all”+“scaling” settings, so φi indicate the meta-
learned weights of SS operators. The results show that
1) “w/ AANets” performs best in all settings and brings
consistent improvements; and 2) “update θbase” is helpful
for CIFAR-100 but harmful for ImageNet-Subset.

Last-phase acc. (%)
CIFAR-100 ImageNet-Subset

N=5 10 25 5 10 25

LUCIR (50 cls in Phase 0) 54.3 50.3 48.4 60.0 57.1 49.3
w/ AANets 58.6 56.7 53.3 64.3 58.0 56.5

LUCIR (same # of cls) 52.1 44.9 40.6 60.3 52.5 53.3
w/ AANets, update θbase 54.3 47.4 42.4 61.4 52.5 48.2
w/ AANets 52.6 46.1 41.9 68.8 60.8 56.8

Table S1. Supplementary to Table 1. Last-phase accuracies (%)
for different class-incremental learning (CIL) settings.

B. Strict Memory Budget Experiments

In Table S2, we present the results of 4 state-of-the-
art methods w/ and w/o AANetss as a plug-in architec-
ture, under the “strict memory budget” setting which strictly
controls the total memory shared by the exemplars and
the model parameters. For example, if we incorporate
AANetss to LUCIR [16], we need to reduce the num-
ber of exemplars to balance the additional memory intro-
duced by AANetss (as AANetss take around 20% more
parameters than the plain ResNets used in LUCIR [16]).
As a result, we reduce the numbers of exemplars for
AANetss from 20 to 13, 16 and 19, respectively, for CIFAR-
100, ImageNet-Subset, and ImageNet, in the “strict mem-
ory budget” setting. For CIFAR-100, we use 530k ad-
ditional parameters, so we need to reduce 530kfloats ×
4bytes/float÷ (32× 32× 3bytes/image)÷ 100classes ≈
6.9images/class, and d6.9e = 7images/class. For
ImageNet-Subset, we use 12.6M additional parameters, so
we need to reduce 12.6Mfloats × 4bytes/float ÷ (224 ×
224 × 3bytes/image) ÷ 100classes ≈ 3.3images/class,
and d3.3e = 4images/class. For ImageNet, we use 12.6M
additional parameters, so we need to reduce 12.6Mfloats×
4bytes/float÷(224×224×3bytes/image)÷100classes ≈
0.3images/class, and d0.3e = 1image/class. From Ta-
ble S2, we can see that our approach of using AANetss still
achieves the top performances in all CIL settings even if the
“strict memory budget” is applied.

C. More Ablation Results

In Table S3, we supplement the ablation results obtained
in more settings. “4×” denotes that we use 4 same-type
blocks at each residual level. Comparing Row 7 to Row
2 (Row 5) shows the efficiency of using different types of
blocks for representing stability and plasticity.



D. Additional Plots
In Figures S2, we present the phase-wise accuracies ob-

tained on CIFAR-100, ImageNet-Subset and ImageNet, re-
spectively. “Upper Bound” shows the results of joint train-
ing with all previous data accessible in every phase. We
can observe that our method achieves the highest accuracies
in almost every phase of different settings. In Figures S3
and S4, we supplement the plots for the values of αη and
αφ learned on the CIFAR-100 and ImageNet-Subset (N=5,
25). All curves are smoothed with a rate of 0.8 for a better
visualization.

E. More Visualization Results
Figure S1 below shows the activation maps of a

“goldfinch” sample (seen in Phase 0) in different-phase
models (ImageNet-Subset, N=5). Notice that the plastic
block gradually loses its attention on this sample (i.e., for-
gets it), while the stable block retains it. AANets benefit
from its stable blocks.

Figure S1. Supplementary to Figure 3. The activation maps of a
“goldfinch” sample (seen in Phase 0) in different-phase models
(ImageNet-Subset; N=5).

F. Source Code in PyTorch
We provide our PyTorch code on https://class-il.mpi-

inf.mpg.de/. To run this repository, we kindly advise you
to install Python 3.6 and PyTorch 1.2.0 with Anaconda.
Create a new environment and install PyTorch on it:

1 conda create --name e3bm-pytorch python=3.6
2 conda activate e3bm-pytorch
3 conda install pytorch=1.2.0
4 conda install torchvision -c pytorch

Install other requirements:

1 pip install tqdm tensorboardX Pillow==6.2.2

Running experiments on CIFAR-100:

1 python3 main.py --nb_cl_fg=50 --nb_cl=10 --gpu=0
--random_seed=1993 --baseline=lucir --
branch_mode=dual --branch_1=ss --branch_2=
free --dataset=cifar100

1 python3 main.py --nb_cl_fg=50 --nb_cl=10 --gpu=0
--random_seed=1993 --baseline=icarl --
branch_mode=dual --branch_1=ss --branch_2=
free --dataset=cifar100



Method
CIFAR-100 ImageNet-Subset ImageNet

N=5 10 25 5 10 25 5 10 25

iCaRL [34] 57.12±0.50 52.66±0.89 48.22±0.76 65.44±0.35 59.88±0.83 52.97±1.02 51.50±0.43 46.89±0.35 43.14±0.67

w/ AANetss (ours) 63.91±0.52 57.65±0.81 52.10±0.87 71.37±0.57 66.34±0.61 61.87±1.01 63.65±1.02 61.14±0.59 55.91±0.95

64.22±0.42 60.26±0.73 56.43±0.81 73.45±0.51 71.78±0.64 69.22±0.83 63.91±0.59 61.28±0.49 56.97±0.86

LUCIR [16] 63.17±0.87 60.14±0.73 57.54±0.43 70.84±0.69 68.32±0.81 61.44±0.91 64.45±0.32 61.57±0.23 56.56±0.36

w/ AANetss (ours) 66.46±0.45 65.38±0.53 61.79±0.51 72.21±0.87 69.10±0.90 67.10±0.54 64.83±0.50 62.34±0.65 60.49±0.78

66.74±0.37 65.29±0.43 63.50±0.61 72.55±0.67 69.22±0.72 67.60±0.39 64.94±0.25 62.39±0.61 60.68±0.58

Mnemonics [25] 63.34±0.62 62.28±0.43 60.96±0.72 72.58±0.85 71.37±0.56 69.74±0.39 64.54±0.49 63.01±0.57 61.00±0.71

w/ AANetss (ours) 66.12±0.00 65.10±0.00 61.83±0.00 72.88±0.00 71.50±0.00 70.49±0.00 65.21±0.76 63.36±0.67 61.37±0.80

67.59±0.34 65.66±0.61 63.35±0.72 72.91±0.53 71.93±0.37 70.70±0.45 65.23±0.62 63.60±0.71 61.53±0.29

PODNet-CNN [11] 64.83±1.11 63.19±1.31 60.72±1.54 75.54±0.29 74.33±1.05 68.31±2.77 66.95 64.13 59.17
w/ AANetss (ours) 66.36±1.02 64.31±1.13 61.80±1.24 76.63±0.35 75.00±0.78 71.43±1.51 67.80±0.87 64.80±0.60 61.01±0.97

66.31±0.87 64.31±0.90 62.31±1.02 76.96±0.53 75.58±0.74 71.78±0.81 67.73±0.71 64.85±0.53 61.78±0.61

Table S2. Supplementary to Table 2. Using “strict memory budget” setting. Average incremental accuracies (%) of four state-of-the-art
methods w/ and w/o our AANetss as a plug-in architecture. The red lines are the corresponding results in Table 2 of the main paper.

Row Ablation Setting
CIFAR-100 (acc.%) ImageNet-Subset (acc.%)

Memory FLOPs #Param N=5 10 25 Memory FLOPs #Param N=5 10 25

1 single-branch “all” [16] 7.64MB 70M 469K 63.17 60.14 57.54 330MB 1.82G 11.2M 70.84 68.32 61.44
2 “all” + “all” 9.43MB 140M 938K 64.49 61.89 58.87 372MB 3.64G 22.4M 69.72 66.69 63.29
3 4× “all” 13.01MB 280M 1.9M 65.13 64.08 59.40 456MB 7.28G 44.8M 70.12 67.31 64.00

4 single-branch “scaling” 7.64MB 70M 60K 62.48 61.53 60.17 334MB 1.82G 1.4M 71.29 68.88 66.75
5 “scaling” + “scaling” 9.43MB 140M 120K 65.13 64.08 62.50 382MB 3.64G 2.8M 71.71 71.07 66.69
6 4× “scaling” 13.01MB 240M 280K 66.00 64.67 63.16 478MB 3.64G 5.6M 72.01 71.23 67.12

7 “all” + “scaling” 9.66MB 140M 530K 66.74 65.29 63.50 378MB 3.64G 12.6M 72.55 69.22 67.60
8 “all” + “frozen” 9.43MB 140M 469K 65.62 64.05 63.67 372MB 3.64G 11.2M 71.71 69.87 67.92
9 “scaling” + “frozen” 9.66MB 140M 60K 64.71 63.65 62.89 378MB 3.64G 1.4M 73.01 71.65 70.30

Table S3. Supplementary to Table 1. More ablation study. “4×” denotes that we use 4 same-type blocks at each residual level.



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#phase (N=25)

UpperBound AANets (ours) PODNet Mnemonics LUCIR BiC iCaRL LwF

(a) CIFAR-100 (100 classes). In the 0-th phase, θbase is trained on 50 classes, the remaining classes are given evenly in the subsequent phases.

(b) ImageNet-Subset (100 classes). In the 0-th phase, θbase is trained on 50 classes, the remaining classes are given evenly in the subsequent phases.

(c) ImageNet (1000 classes). In the 0-th phase, θbase on is trained on 500 classes, the remaining classes are given evenly in the subsequent phases.

Figure S2. Supplementary to Table 2.Phase-wise accuracies (%). Light-color ribbons are visualized to show the 95% confidence intervals.
Comparing methods: Upper Bound (the results of joint training with all previous data accessible in each phase); PODNet (2020) [11];
Mnemonics (2020) [25]; LUCIR (2019) [16]; BiC (2019) [48]; iCaRL (2017) [34]; and LwF (2016) [23].
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(a) CIFAR-100, N=5
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(b) CIFAR-100, N=25

Figure S3. Supplementary to Figure 4. The changes of values for αη and αφ on CIFAR-100.
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(a) ImageNet-Subset, N=5
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Figure S4. Supplementary to Figure 4. The changes of values for αη and αφ on ImageNet-Subset.
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