Cluster-wise Hierarchical Generative Model for Deep Amortized Clustering
Supplementary Material

1. Details of ELBO
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2. Implementation Details
2.1. Multi-head attention Module (MhA)

We use Multi-head attention Module MHA (+) to exploit pair-wise or higher-order interactions between data points in both
inter-and intra-cluster. Considering we want to capture the elements-wise relationship between A and B, we set A as query,
and set key and values are B. The Multi-head attention Module is defined as follow

MHA(A,B) = CONCAT(Oy,--- ,05)W"
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where o (+) is activation function, W?, WX W/ are head-specific transform matrices.
2.2. Implementation of ¢, (7*|Cy.x, S*)

For convenience, we drawn one-hot vector o* from the following categorical distribution:
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here I* = index(max(o*))
3. Proof for Theorem 1

Theorem 1 Ergodic amortized inference (EAI) objective Lj o serves as a valid lower bound to the log likelihood of data and
tighter than the original amortized inference objective Lg 4 and SVI-based amortized inference objective Eﬁ & The lower
bounds satisfy

Loy < Loy < L < Epx ) l0gpa(Crix |X) )



Proof  Firstly, we show the following facts about the log-likelihood lower bound £j ,
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Secondly, we prove that Lﬁ » < Ly 4 LetI C{1,--- .M} with |I| = P be a uniformly distributed subset of distinct indices

from {1,---,M}.
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Inequality (a) holds due to the Jensen’s inequality, and equality (b) holds since a simple observation:
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Based on above inequality, we can derive that
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Since z,(CM) is the optimal zj, we can obtain
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By combining inequalities (5), (7), (8) and (9), we established the bound as stated above.

3.1. Infrastructure and Experimental Details

Infrastructure: We implement our model with Tensorflow, and conduct our experiments with:
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(a) Ground-truth (b) Epoch 5 (c) Epoch 13 (d) Epoch 16 (e) Epoch 21

Figure 1. The cluster generative process of CHiGac on 2D MoG with 4 components.

e CPU: Intel Xeon Silver 4116 @2.1GHz.

o GPU: 8x GeForce RTX 2080Ti.

e RAM: DDR4 256GB.

e ROM: 8x 1TB 7.2K 6Gb SATA and 1x 960G SATA 6Gb R SSD
e Operating system: Ubuntu 18.04 LTS.

e Environments: Python 3.7; NumPy 1.18.1; SciPy 1.2.1; scikit-learn 0.23.2; seabornn 0.1; torch_geometric 1.6.1; mat-
plotlib 3.1.3; dgl 0.4.2; pytorch 1.6

Hyper-parameter search: We trained with the following hyperparameters: The neural network (e.g., fo(-), fo(-), 94.i(-)
in our model is a multilayer perceptron (MLP). We use the fanh activation function. We apply dropout before every layers,
except the last layer. The model is trained using Adam. We then tune the other hyper-parameters of both our approachs and
our baselines automatically using the TPE method implemented by Hyepropt. We let Hyperopt conduct 200 trials to search
for the optimal hyper-parameter configuration for each method on the validation of each dataset. The hyper-parameter search
space is specified as follows:

e The number of hidden layers in a neural network: {0, 1,2, 3 }.
e The number of neurons in a hidden layer: {100, 200, - - -, 1000 }.
e Learning rate: [1078,--- ,1].
e L2 regularization: [10~12, ... 1].
e Dropout rate:[0.05, - - - , 1].
e Regularization coefficient A: [1,10].
e The standard deviation of the prior for { 6, ¢ }: [0.01,0.5].
2D MoG data generation: We generate synthetic data by the following process.

a ~ Ezp(l) ci:n ~ CRP(«)
wr ~ N(0, ail) Xi ~ N(pte;,0°1)

Here we give a more large-size illustration for the generative process, as shown in Figure |

The learned clusters: In Figure 2 we show top-10 scoring images from each cluster in MNIST and STL-10. Each row
corresponds to a cluster and images are sorted from left to right based on the learned hY. We observe that for MNIST, the
cluster assignment corresponds to natural clusters very well, while for STL-10, the results are mostly correct with airplanes,
trucks and cars, but spends part of its attention on poses instead of categories when it comes to animal classes.
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(b) STL-10

(a) MNIST
Figure 2. Illustration of the learned top-10 images in each cluster of MNIST and STL-10.



