DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with
Biharmonic Coordinates — Supplementary Material

Minghua Liu'

Please check out our webpage' for the animations of the
learned meta-handles. In this supplementary material, we
first discuss the network architecture details of the range
prediction module, DeformNet, and the discriminator net-
work (Sec. S.2), and also the training details (Sec. S.3). We
then present the details and ablation studies of the disen-
tanglement loss Lg;sen, (Sec. S.4). Moreover, we evaluate
the impact of the numbers of control points and the out-
put meta-handles (Sec. S.5) and also discuss the difference
between our differentiable-renderer-based 2D discrimina-
tor and 3D discriminator (Sec. S.6). We also examine the
effectiveness of our deformation generative model when it
is used for data augmentation (Sec. S.7). Lastly, we pro-
vide more results of the target-driven deformation and show
learned meta-handles for the laptop category (Sec. S.8).

S.1. Animations of the Learned Meta-Handles

We show the animations of the learned meta-handles in
our webpage. Chrome browser is preferred for the best
display. On the webpage, each row shows deformations
of meta-handles with the same index for different shapes.
Note that the learned meta-handles are consistent across the
shapes. The animations demonstrate that our learned meta-
handles properly factorize the plausible deformation space
of the shape while each of them corresponds to an intuitive
deformation direction.

S.2. Network Architecture

In this subsection, we describe the architectures of the
range prediction module, DeformNet, and the discriminator
network, which are introduced in Sec. 3.2 in the paper.

Range Module. As shown in Fig. S2, after predicting
the meta-handles, the range module predicts a coefficient
range [L;, R;] for each meta-handle. It takes the rest po-
sitions of the control points, 64-dimensional control point
features (predicted by MetaHandleNet), and the predicted
meta-handles as input. The module incorporates the infor-
mation by building a 3D tensor, where each pair of meta-

'http :/ /cseweb .ucsd.edu/ -mil070 / deep _meta _
handles_supp_animations

Minhyuk Sung?
"University of California San Diego

Hao Su'
3 Adobe Research

Radomir Mech?
ZKAIST

handle and control point has a 70-dimensional feature. The
module then applies an MLP to the 70-dimensional features,
resulting in a 2-dimensional feature for each pair of meta-
handle and control point. The module then utilizes a max-
pooling to aggregate the information across all the control
points, resulting in a m x 2 matrix. We then reverse the sign
of the first column (due to the max-pooling) to output the
final coefficient ranges.

DeformNet. After MetaHandleNet predicts a set of meta-
handles with the corresponding coefficient ranges for the
source shape, DeformNet finds a coefficient vector within
the deformation space so that the deformed source shape
matches the target shape. Fig. S1 shows the architecture
of DeformNet. It first utilizes PointNet [5] to process both
the source and target point clouds to obtain the global fea-
tures for the source and target shapes. The global features
are repeated for the control points and are then combined
with the 64-dimensional control point features (predicted by
MetaHandleNet) and the rest positions of the control points,
resulting in a 2,115-dimensional feature for each control
point. The features are fed into an MLP to output a 128-
dimensional feature for each control point. We then create
a 3D tensor to incorporate the control point features, pre-
dicted meta-handles, and the rest positions of the control
points. In this 3D tensor, each pair of meta-handle and con-
trol point has a 134-dimensional feature. We then apply an
MLP to the features to output a 128-dimensional feature for
each pair of meta-handle and control point. A max-pooling
is then applied to aggregate the features across all the con-
trol points, resulting in a 128-dimensional feature for each
meta-handle. The features are then combined with the pre-
dicted coefficient ranges and are fed into another MLP (with
Sigmoid as the final activation function) to output a ratio
within [0, 1] for each meta-handle. With both the ratios and
the coefficient ranges, we output a coefficient vector within
the ranges to represent the deformation.

Discriminator. We utilize a relatively simple 2D network
as the discriminator network to match the capability of the
deformation generation part. Specifically, the discriminator
network takes a 128 x 128 image as input and uses three

http://cseweb.ucsd.edu/~mil070/deep_meta_handles_supp_animations
http://cseweb.ucsd.edu/~mil070/deep_meta_handles_supp_animations

Source PC— —
1024

px3 z
£
Target PC— £ =
s 1024 23 o L B
E =
£ = Eey i
3] i
Control Point ex 128 Z|E m e x 134 mxex128 mx 128 $m x 130 Ratio © EO* 1]
- ex2115 % m
Ffaxugfs Predicted i"* .
Meta-Handles Coefficient Coefficients
Control Point mrex %?I;ggs mx 1
Rest Positions
cx3
Figure S1: Architecture of DeformNet.
Control Point M; and the coefficient vector a to be sparse by penalizing
Rest Positions .
%3 their /1-norm:
=
- i<}
Control Point E|2 Ay 5 2 = m
> 2 —2-5+Ranges 1
Features 5% = =g 2% mx2 Esp: — E HMiHlJFHaHh S.1)
cx 64 mxcx2 mx2 iZ m
m x c¢x 70 i=1
Predicted
Meta-Handjes where m is the number of the meta-handles.

Figure S2: Architecture of the range prediction module.

convolutional layers to process. Each convolutional layer is
followed by batch normalization and LeakyReLU. A fully
connected layer, along with the sigmoid function, is then
utilized to output the final probability.

S.3. Training Details

As described in Sec. 4.1, we use public code to convert
the mesh to tetrahedral mesh and then calculate the bihar-
monic coordinates. We found that the mesh conversion and
the coordinate computation are robust even to the shapes
with thin parts and complicated topology. Note that we
have an example with a complex wire structure in the 9th
column of Fig. 6. In the network training, however, we also
find that pruning some shapes that have large biharmonic
coordinates is helpful for faster convergence. We removed
10% of such shapes in the ShapeNet dataset.

We trained our models on 3 Nvidia RTX 2080 Ti GPUs
for 2.8 x 10* iterations (i.e., 1.1 x 10 pairs) with a batch
size of 39. Adam is used as the optimizer with a learning
rate of le-4. All loss terms have an individual weight, and
we empirically select the weights. For chair category, the
weights are setto 1, 1, 0.1, 3, 6e-3, le-3, le-3, le-3, and 0.3
for £fits Esymma £7wr» ELap’ Eadvs ACsp» £cov’ Eortho» and
Lsvp respectively.

S.4. Details of the Disentanglement Loss L;c,

Here, we introduce the four terms of the disentanglement
loss Lg;sen (Eq. 5 in the paper).
L, is a sparsity loss that encourages the meta-handles

Lcoy 1s a covariance penalty loss introduced by
Aumentado-Armstrong et al. [1] that encourages meta-
handles to be independent with each other. This loss cal-
culates the covariance matrix of the coefficients a for each
batch and penalizes the [1-norm of the matrix:

Leow = || cov(a,a)];. (S.2)

Lortho 18 an orthogonality loss that encourages the meta-
handles to cover different coordinates of control point off-
sets. It is calculated as:

2
1,1»

= (8.3)

> IM; o M|

i#]

['ortho

where ‘o’ denotes element-wise multiplication. Intuitively,
if two meta-handles have no overlap over the offset coor-
dinates, we regard them to be “orthogonal” and they have
zero contribution to L,,¢10-

Lastly, Lsy p is an SVD loss that encourages the control
points to translate along with similar directions within each
meta-handle. Specifically, for each meta-handle M;, we
regard the control-point offsets of M; as ¢ points in the 3D
space. Given the points, we find the best-fit plane and then
calculate the sum of the distances from the points to the
plane, which is equal to o3(M? M) and o3 indicates the
smallest singular value of the matrix. Lgy p is defined as
minimizing the distances:

1 — T
Lsvp = - ;Ug(Mi M;). (S.4)

Table S1 shows the quantitative comparison for the dis-
entanglement loss Lg;sen. We find that after removing

Table S1: Quantitative comparison between without and with the
disentanglement loss Lg;sen- The network is trained on the chair
category.

‘ w/o £disen ‘ w/ Acdisen
Lsp L 13.355 7.7468
Leov 4 3.5890 1.3229
Eortho J/ 10.843 4.2842
Lsvp 4 0.1063 0.0002

per_coordinate per_control_point

1.00-
,-//1
0.75- /
() /
=) 7 /
c>u .'"; //
| / S/
9 / [
g0.50 1/; 7
I /
£ / '
9 /|
0.25
0.00-
0 50 100 150 0 10 20 30 40 50
index

with_L_disen—without_L_disen

Figure S3: The impact of Lgisen on the sparsity of meta-handles.

Figure S4: Results without Lgisern: the figure shows six meta-
handles of two shapes, with arrows highlight the deformations.
Each meta-handle corresponds to multiple deformations, and there
are overlapping between the meta-handles.

Laisen, all the four terms increase a lot, which indicates
that £4;se, 1S essential for the proper factorization of the

Figure S5: In each pair, the left one shows the deformation with a
3D point cloud discriminator, while the right one shows the defor-
mation with our 2D discriminator.

deformation space.

Fig. S3 further illustrates the impact of Lg;se,, On the
sparsity of meta-handles. For the per-coordinate case, we
show the distribution of offsets of 50 x 3 coordinates. For
the per-control-point case, we first calculate the [2-norm of
the offsets for each control point and then show the distri-
bution of the [2-norms. For both cases, the values are nor-
malized within each meta-handle and averaged across all
the meta-handles and shapes. As shown in the figure, when
Laisen 18 applied, each meta-handle tends to be sparse, and
only a small part of coordinates (control points) are im-
pacted. When Lg;sen is not applied, however, the meta-
handles are no longer sparse and tend to deform most of the
control points.

Fig. S4 shows more results when L j; e, is ablated. The
results demonstrate the importance of L 4; s, for the proper
factorization of the deformation space.

S.5. Impact of the Numbers of Control Points and
Meta-Handles

We evaluate the impact of the number of control points
and meta-handles on the deformation. Please note that here
the number of meta-handles indicates the upper bound of
the size since the network can use part of them by setting
the ranges to zero. Table S2 shows the quantitative results
of the chair category. As shown in the table, when we de-
crease the number of control-point handles from 50 to 25,
both the Chamfer distance and cotangent Laplacian increase
a little bit, since the degree of freedom of the deformation
drops. However, when we increase the number of control-
point handles from 50 to 100 and 200, both the Chamfer
distance and cotangent Laplacian increase a lot. There are
two possible reasons: (a) it is more difficult for the net-
work to deform shapes with such a large number of control
points; (b) due to the GPU memory bottleneck, we have to
reduce the batch size during training when there is a large
number of control points (we reduced the batch size from
39 to 12 when increasing the number of control points from
50 to 200). As for the meta-handles, when we double the
number of meta-handles, the Chamfer distance is similar,
which indicates that 15 meta-handles are already enough to
produce flexible deformations for the chair category. How-
ever, the cotangent Laplacian becomes worse, which sug-

gests that it is more difficult for the network to handle lots
of meta-handles, and they may introduce some unnecessary
distortions.

Table S2: Impact of the numbers of control points and meta-
handles. The last row is the model used in the rest of the exper-
iments. ‘CD’ indicates Chamfer distance, and ‘CotLap’ indicates
cotangent Laplacian.

Control Points | # Meta-Handles ‘ CD | ‘ CotLap |
25 15 0.0644 0.5955
100 15 0.0715 0.9101
200 15 0.0758 0.8777
50 30 0.0621 0.8948
50 15 0.0628 0.5751

S.6. Comparison with PointNet-based 3D Discrim-
inator

While we leverage a differentiable renderer and a 2D net-
work for the discriminator, one can consider directly feed-
ing the 3D deformed shape to a 3D processing network. To
compare our discriminator with the case of directly process-
ing 3D, we implemented another discriminator using Point-
Net [5] and fed the points sampled over the deformed 3D
mesh as input. Figure S5 shows some comparisons. Al-
though the PointNet-based 3D discriminator can also pre-
vent large distortions, we found that our 2D discriminator
produces more visually pleasing deformations in practice.
This might happen since the 2D discriminator can capture
more subtle visual differences in the 2D space comparing
with taking only account with the 3D geometry.

S.7. Application: Data Augmentation

Table S3: Data augmentation for subcategory classification.

Test Accuracy

No Augmenation 88.3%
w/0o Ladw 89.8%
Target-Driven 90.4%
Ours 91.6%

Our method learns a plausible deformation space for the
input shape and can thus be used for data augmentation. We
evaluate our approach as a tool of data augmentation with
a multi-label shape classification task. Specifically, we use
ten subcategories of ShapeNet [2] chair models, and each
model can belong to multiple subcategories (e.g., armchairs
and swivel chairs). We sample 50 ShapeNet chair models as
training data and 500 chair models as test data. To balance
the data, while sampling, we ensure that each subcategory
appears at least five times in the training data and at least

50 times in the test data. We employ PointNet [5] as the
classification network and train it with binary cross-entropy
loss for each subcategory. We test four different settings: a)
training on 50 shapes without data augmentation; b) train-
ing on 50 x 20 augmented shapes, where we utilize our
method to randomly generate 20 variants within the defor-
mation space of each shape; c) same with b) but without
the adversarial loss L4, When training our network; and d)
training on 50 x 20 augmented shapes, where we randomly
sample 20 targets for each shape and use our target-driven
deformation to generate the variants. For all the generated
deformations, we keep their original subcategory labels for
training. The results are shown in Table S3. The results ver-
ify that our method can improve the classification accuracy
and also that the adversarial loss £, is essential to gener-
ate plausible deformations. The target-driven deformation
is less effective in sampling all the plausible variants.

S.8. More Results of Target-Driven Deformation
and Learned Meta-Handles on Laptops

Figure S6 shows more results of the target-driven defor-
mation, as also shown in Figure 6 in the paper. Figure S7
also shows the learned meta-handles on the laptop category.
The results show that our method can learn the articulated
motion of the two parts.

References

[1] T. Aumentado-Armstrong, S. Tsogkas, A. Jepson, and S.
Dickinson. Geometric disentanglement for generative latent
shape models. In ICCV, 2019. 2

[2] Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas,
Pat Hanrahan, Qi-Xing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li
Yi, and Fisher Yu. Shapenet: An information-rich 3d model
repository, 2015. 4

[3] Thibault Groueix, Matthew Fisher, Vladimir G. Kim,
Bryan C. Russell, and Mathieu Aubry. Deep self-supervised
cycle-consistent deformation for few-shot shape segmenta-
tion. In Eurographics Symposium on Geometry Processing,
2019. 5

[4] Haibin Huang, Evangelos Kalogerakis, Siddhartha Chaud-
huri, Duygu Ceylan, Vladimir G. Kim, and Ersin Yumer.
Learning local shape descriptors from part correspondences
with multiview convolutional networks. ACM Transactions
on Graphics, 2017. 5

[5] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and
Leonidas J. Guibas. Pointnet: Deep learning on point sets
for 3D classification and segmentation. In CVPR, 2017. 1,4

[6] Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich
Neumann. 3dn: 3d deformation network. In CVPR, 2019.
5

[7] Wang Yifan, Noam Aigerman, Vladimir Kim, Siddhartha
Chaudhuri, and Olga Sorkine-Hornung. Neural cages for
detail-preserving 3d deformations. In CVPR, 2020. 5

Source

Target

NRICP

3DN

CC

Neural
Cages

Ours

Figure S6: Qualitative comparison of our method with other deformation methods [4, 6, 3, 7]. (More examples of Figure 6 in the paper.)

Figure S7: The learned meta-handles for the laptop category. Each

column shows the deformations along the direction of a meta-
handle.

