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A. Training data preparation

For training data involved with the ShapeNet dataset, we
use data preprocessing tools from [3] to generate watertight
meshes via TSDF fusion. We then normalize each mesh
into a [—1, 1]® bounding box with 5% padding and compute
signed distance function (SDF) values and gradients using
the OpenVDB library (https://www.openvdb.org).
We generate 256 x 256 x 256 SDF grids, denoted by
F = {(¢,4,k,si;k, VSijk)}, and collect SDF samples
subset in a progressive manner: we first gather depth-6
SDF samples ((i.e., samples whose indices satisfy: ¢, j, k
mod 4 = 0)) with absolute SDF values less than %, this
threshold guarantees coverage of generated octree nodes. To
better capture shape details, similar to the sampling strategy
in [2], we add more SDF samples near the surface, to be
concrete, the depth-7 SDF samples with absolute SDF values

1
less than 16"

B. Evaluation metrics

We reuse the evaluation tools of [3] to compute the follow-
ing metrics. We denote M, and M), as the ground-truth mesh
and the mesh of the predicted result. &' := {xy,...,xn,}
and Y := {y1,...,yn,} are randomly sample points on
these two meshes, respectively. We define Pgo,(x) =
arg ming .y, [|x — y|| and P2, (y) = arg min, . » [|x — y/.
n(-) denote an operator that returns the normal vector of a
given point.
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e 10U is the volumetric intersection of two meshes di-
vided by the volume of their union. To compute this
metric, 100k points are sampled in the bounding box
and are determined whether they are in or outside two
meshes.

» F-Score is the harmonic mean between Precision and
Recall. Precision is the percentage of points on M, that
lie within distance 7 to M, Recall is the percentage of
points on M that lie within distance 7 to M,,.

2xprecision*Recall
F-Score =

precision + Recall

We also compute the light field descriptor(LFD) to evaluate
the perceptional similarity of the results to the ground-truth
by following the setup of [1]. LFD is computed in the fol-
lowing way: each generated shape is rendered from various
views and results in a set of projected images, then each pro-
jected image is encoded using Zernike moments and Fourier
descriptors.

C. Network architecture

The number of network parameters for our network IML-
SNet(7,7,1) reported in the paper is 4.6 M. The detailed setup
of IMLSNet(7,6,1) and IMLSNet(7,7,1) is illustrated in the
first and second rows of Table 1. We also did an ablation
study by setting the channel number of depth-2 and depth-3
octree nodes to 128 and reduced the network parameter size
while achieving comparable performances as shown in Ta-
ble 2. The networks are denoted by IMLSNet(6,6,1)* and
IMLSNet(7,7,1)*.
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Figure 1: (a): Non-empty finest octants predicated by the network based on the octree-aided deep local implicit function. (b):
Reconstruction results from (a). (c): Ground-truth non-empty finest octants. (d): The expanded octree. (e): Reconstruction

results based on (d). (f) Our IMLSNet results.

Network | 2 3 4 5 6

IMLSNet(7,6,1) | 256 256 128 64 32 16 | 4.6M
IMLSNet(7,7,1) | 256 256 128 64 32 16 | 4.6M
IMLSNet(7,6,1)* | 128 128 128 64 32 16 | 1.5M
IMLSNet(7,7,1)* | 128 128 128 64 32 16 | 1.60M

7 ‘ size

Table 1: Network parameters of IMLSNets. Feature channel
dimensions on each octree depth (from 2 to 7) are listed.

Network CD; | NCtT IoUT F-Score
IMLSNet(7,6,1)  0.0310 0.9430 0.9134 0.9813
IMLSNet(7,7,1)  0.0306 0.9440 0.9135 0.9833
IMLSNet(7,6,1)* 0.0311 0.9425 0.9129 0.9814
IMLSNet(7,7,1)* 0.0307 0.9434 0.9132 0.9827

Table 2: Quantitative evaluation of IMLSNet with different
network settings on the task of 3D object reconstruction.

D. Octree-aided deep local implicit function

As discussed in Section 4, our ablation study shows that
the octree-aided deep local implicit function has issues in
obtaining complete zero-iso surfaces. We confirm this fact
by examining the generated non-empty octants which cover
the missing regions but the local implicit function does not
generate the iso-surface in them. Fig. 1-a illustrates these
octants which cover the ground-truth non-empty octants (see
Fig. 1-c) but fail to generate a complete shape (Fig. 1-b).
We speculate that the implicit function passes through the
neighboring region which is not covered by the current finest
octants. Based on this speculation, we split all the d — 1-
depth octants to expand the octree (see Fig. 1-d) and extract
the surface via marching cubes. It turns out that the implicit
surface appears in those regions (see Fig. 1-e), however, the
reconstruction error is higher than our IMLSNet (Fig. 1-f).

Network 1 CD; | NCt IoU1T F-Score

IMLSNet 1.0x 1073 0.0288 0.9476 0.9226 0.9859
ConvOccNet 1.0 x 1072 0.0495 0.9349 0.8573 0.9442

IMLSNet 3.0x 1073 0.0290 0.9473 0.9219 0.9857
ConvOccNet 3.0 x 1072 0.0439  0.9377 0.8831 0.9461

IMLSNet 5.0x 1072 0.0306 0.9440 0.9135 0.9833
ConvOccNet 5.0 x 1072 0.0441  0.9383  0.8842 0.9421

IMLSNet 7.5x107%  0.0372 0.9291 0.8754 0.9705
ConvOccNet 7.5 x 1072 0.0536  0.9345 0.8435 0.9221

Table 3: Robustness test to noise.

E. Evaluation of object reconstruction

In Table 4, we report the numerical metrics of the tasks
of object reconstruction from point clouds for each shape
category. Fig. 2 presents more visual results reconstructed
from our network. All the evaluations demonstrate the su-
periority of our method over other approaches in terms of
reconstruction accuracy and the capacity of recovering de-
tails and thin regions. In Fig. 3 we present more results of
our ablation study of different network settings.

F. Robustness test on noise levels

We did a robustness test on the input noise. The network
IMLSNet(7,7,1) and ConvOccNet were trained with noisy
data whose Gaussian noise is with standard deviation § =
5 x 1073, We add different noise levels (6 = 1 x 1073, 3 x
1073,7.5 x 1073) to the test data of 13 shape classes and
feed to our network and ConvOccNet for evaluating their
performance. From Table 3, we can see with lower noise
levels, our network always performs better than ConvOccNet.
With a higher level noise (§ = 7.5 x 10~3), The network
performance of both methods degrades gracefully, and our
method still outperforms ConvOccNet.



cD, | NC 1
Category | O-CNN-C IMLSNet points ConvOccNet IMLSNet ‘ O-CNN-C IMLSNet points ConvOccNet IMLSNet
airplane 0.0634 0.0316 0.0336 0.0245 0.9181 0.9292 0.9311 0.9371
bench 0.0646 0.0356 0.0352 0.0301 0.9136 0.9194 0.9205 0.9220
cabinet 0.0709 0.0375 0.0461 0.0348 0.9411 0.9505 0.9561 0.9546
car 0.0765 0.0419 0.0750 0.0395 0.8668 0.8709 0.8931 0.8820
chair 0.0664 0.0383 0.0459 0.0348 0.9407 0.9487 0.9427 0.9503
display 0.0655 0.0339 0.0368 0.0292 0.9598 0.9710 0.9677 0.9732
lamp 0.0667 0.0367 0.0595 0.0312 09111 0.9206 0.9003 0.9218
speaker 0.0729 0.0413 0.0632 0.0396 0.9363 0.9440 0.9387 0.9473
rifle 0.0617 0.0300 0.0280 0.0207 0.9320 0.9428 0.9293 0.9433
sofa 0.0657 0.0350 0.0414 0.0309 0.9492 0.9602 0.9579 0.9631
table 0.0663 0.0360 0.0385 0.0319 0.9461 0.9599 0.9588 0.9621
telephone 0.0610 0.0295 0.0270 0.0229 0.9737 0.9827 0.9823 0.9839
vessel 0.0641 0.0336 0.0430 0.0271 0.9221 0.9280 0.9187 0.9319
mean ‘ 0.0666 0.0355 0.0441 0.0306 ‘ 0.9316 0.9406 0.9382 0.9440
bag 0.0704 0.0386 0.0538 0.0351 0.9342 0.9420 0.9417 0.9455
bathtub 0.0663 0.0378 0.0526 0.0350 0.9478 0.9599 0.9537 0.9622
bed 0.0720 0.0428 0.0608 0.0412 0.9192 0.9246 09119 0.9278
bottle 0.0619 0.0332 0.0421 0.0279 0.9610 0.9696 0.9657 0.9708
pillow 0.0631 0.0340 0.0548 0.0303 0.9652 0.9743 0.9660 0.9757
mean 0.0667 0.0373 0.0528 0.0339 ‘ 0.9455 0.9541 0.9478 0.9564
IoU 1 F-Score T
Category ‘ O-CNN-C IMLSNet points  ConvOccNet IMLSNet ‘ O-CNN-C IMLSNet points  ConvOccNet IMLSNet
airplane n/a n/a 0.8485 0.8910 0.8101 0.9923 0.9653 0.9918
bench n/a n/a 0.8298 0.8480 0.7995 0.9867 0.9643 0.9860
cabinet n/a n/a 0.9398 0.9495 0.7887 0.9833 0.9558 0.9811
car n/a n/a 0.8858 0.9052 0.7474 0.9604 0.8490 0.9521
chair n/a n/a 0.8709 0.9033 0.7993 0.9824 0.9387 0.9815
display n/a n/a 0.9275 0.9491 0.8109 0.9935 0.9708 0.9935
lamp n/a n/a 0.7840 0.8583 0.7999 0.9806 0.8910 0.9785
speaker n/a n/a 0.9188 0.9450 0.7789 0.9676 0.8924 0.9633
rifle n/a n/a 0.8459 0.8856 0.8263 0.9961 0.9799 0.9962
sofa n/a n/a 0.9362 0.9541 0.8052 0.9886 0.9531 0.9873
table n/a n/a 0.8877 0.9076 0.8013 0.9875 0.9674 0.9870
telephone n/a n/a 0.9537 0.9647 0.8252 0.9978 0.9882 0.9978
vessel n/a n/a 0.8663 0.9140 0.8085 0.9880 0.9313 0.9868
mean ‘ n/a n/a 0.8842 0.9135 ‘ 0.8001 0.9850 0.9421 0.9833
bag n/a n/a 0.9229 0.9461 0.7859 0.9766 0.9187 0.9745
bathtub n/a n/a 0.8431 0.9079 0.8014 0.9861 0.9084 0.9851
bed n/a n/a 0.8612 0.9052 0.7727 0.9661 0.8985 0.9622
bottle n/a n/a 0.9468 0.9663 0.8282 0.9916 0.9515 0.9907
pillow n/a n/a 0.9354 0.9700 0.8219 0.9948 0.9005 0.9941
mean \ n/a n/a 0.9019 0.9391 \ 0.8020 0.9831 0.9155 0.9813

Table 4: Quantitative evaluation of different networks on the test data of 13 shape classes and the full data of 5 unseen shape

classes.
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Figure 2: More results of object reconstruction from point clouds.
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Figure 3: More results of our ablation study on network settings. The inputs are the noisy point clouds (see Fig. 3 of the main
body of our paper).



