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Supplementary Material

This supplementary material contains proofs for our representation theorems and additional implementation details for
YETI. Supp. A and Supp. B give the proofs for Theorem 1 and Theorem 2, respectively. Supp. C introduces our advection-
diffusion PDE toolkit in PyTorch and discusses numerical discretization and stability conditions. Supp. D provides detailed
descriptions of our brain advection-diffusion simulation dataset, including how we construct the velocity and diffusion fields,
and how we simulate the brain advection-diffusion time-series.

A. Theorem 1: Divergence-free Vector Representation by the Curl of Potentials

For any vector field V ∈ Lp(Ω)d on a bounded domain Ω ⊂ Rd with smooth boundary ∂Ω. If V satisfies ∇ ·V = 0, there
exists a potential Ψ in Lp(Ω)α such that (α = 1 when d = 2, α = 3 when d = 3)

V = ∇×Ψ, Ψ ·n
∣∣
∂Ω = 0, Ψ ∈ Lp(Ω)α . (19)

Conversely, for any Ψ ∈ Lp(Ω)α , ∇ ·V = ∇ · (∇×Ψ) = 0.
(Here, Lp refers to the space of measurable functions for which the p-th power of the function absolute value is Lebesgue
integrable. Specifically, let 1 ≤ p < ∞ and (Ω,Σ,µ) be a measure space. Lp(Ω) space is the set of all measurable functions
whose absolute value raised to the p-th power has a finite integral, i.e., ∥ f∥p ≡ (

∫
Ω | f |p dµ)1/p < ∞.)

Proof. We give a brief proof in this supplementary material to make it self-contained. Please refer to [13, 1, 33, 2] for
additional discussions regarding alternative boundary conditions for the potentials and domains with complex geometry.

Definition A.1 (The space of curl of potentials).

Hcurl(Ω)≡ {∇×Ψ
∣∣Ψ ∈ Lp(Ω)α , Ω ∈ Rd}, (20)

where α = 1 when d = 2, α = 3 when d = 3.

Definition A.2 (The space of divergence-free velocity fields).

Hdiv(Ω)≡ {V ∈ Lp(Ω)d ∣∣∇ ·V = 0, Ω ∈ Rd}, (21)

where α = 1 when d = 2, α = 3 when d = 3.

• Clearly, for ∀V ∈ Hcurl(Ω), ∇ ·V = 0.

Specifically, when d = 3, the curl of a vector field Ψ = Ψxi+Ψyj+Ψzk is computed by
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Therefore,
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Figure A.10: Decompose a vector into divergence-free part and its orthogonal complement.

When d = 2, we can express Ψ as Ψ = Ψxi+Ψyj(+0k). Likewise,

∇×Ψ =
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as such,

∇ · (∇×Ψ) = 0+0+
∂
∂ z
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∂x
− ∂Ψx

∂y

)
= 0. (25)

• Starting from sufficiently smooth vectors in Lp(Ω)d , the Helmholtz-Hodge decomposition theorem [33] ensures the
existence of its divergence-free part.

Theorem A.1 (Helmholtz-Hodge Decomposition (HHD)). A sufficiently smooth vector field V ∈ Lp(Ω)d on a domain
Ω ⊂Rd with smooth boundary ∂Ω, can be uniquely decomposed into a pure gradient field and a divergence-free vector
field

V = ∇p+u, p ∈ Lp(Ω), u ∈ Hdiv(Ω). (26)

Theorem A.1 can be interpreted as a mapping P, which uniquely projects the smooth vector field V to its divergence-free
part u by PV = u, and representing V as u plus its orthogonal complement (∇p) (Fig. A.10). Therefore, the following
conclusion is natural:

Corollary A.1. P is an identity mapping on Hdiv(Ω). I.e, for ∀V ∈ Hdiv(Ω), PV = V.

Further, for the special cases Ω ∈Rd , d = 2, 3, Hdiv(Ω) is equivalent to the space of the curl of potentials with vanishing
boundary condition [13]:

Hdiv(Ω)≡ {Ψ ∈ Hcurl(Ω)
∣∣Ψ ·n

∣∣
∂Ω = 0, Ω ∈ Rd} . (27)

Combined with Corollary A.1, we have for ∀V ∈ Lp(Ω)d , if V is divergence-free, there exists a potential Ψ ∈Hcurl with
vanishing boundary condition, which satisfies V = ∇×Ψ.



B. Theorem 2: Symmetric PSD Tensor Representation by Spectral Decomposition

For any tensor D ∈ PSD(n), there exists an upper triangular matrix with zero diagonal entries, B ∈ R
n(n−1)

2 , and a diagonal
matrix with non-negative diagonal entries, Λ ∈ SD(n), satisfying:

D = UΛUT , U = exp(B−BT ) ∈ SO(n). (28)

Conversely, for any upper triangular matrix with zero diagonal entries, B ∈ R
n(n−1)

2 , and any diagonal matrix with non-
negative diagonal entries, Λ ∈ SD(n), Eq. (28) computes a symmetric PSD tensor, D ∈ PSD(n).

Proof. First of all, let us define the following three special groups of interest:

Definition B.1 (The n×n symmetric PSD tensor group).

PSD(n)≡ {D ∈ Rn×n ∣∣∀x ∈ Rn : xT Dx ≥ 0}. (29)

Definition B.2 (The special group of real orthogonal matrices).

SO(n)≡ {U ∈ Rn×n ∣∣UT U = I, det(U) = 1}. (30)

Definition B.3 (The special group of real diagonal matrices with all non-negative entries).

SD(n)≡ {diag(λ1, ...λn) ∈ Rn×n ∣∣λ1, ..., λn ≥ 0}. (31)

It is natural to consider the spectral decomposition form for a tensor field D ∈ PSD(n):

Theorem B.1 (Spectral Decomposition for Symmetric Positive Semi-definite Matrix). Let D be a n× n real symmetric
matrix, which is positive semi-definite. Then D can be factorized as:

D = UΛUT , U ∈ SO(n), Λ ∈ SD(n), (32)

where columns of U are the eigenvectors of D, the diagonal entries of Λ are the corresponding non-negative eigenvalues.

As such, any symmetric PSD tensor can be represented via its orthogonal eigenvectors and corresponding eigenvalues.
Intuitively, we can represent a tensor D ∈ PSD(n) by representing its eigenvectors U ∈ SO(n) and eigenvalues Λ ∈ SD(n).

• It is straightforward to represent a diagonal matrix Λ ∈ SD(n) with non-negative entries by simply imposing non-
negativity in the implementation (For example via a ReLU). Representing an orthogonal matrix U needs more
parametrization tricks.

In order to obtain an orthogonal matrix U by construction, we resort to the surjective Lie exponential mapping on SO(n),
which is in fact a compact and connected Lie group [27]. When seen as a sub-manifold of Rn×n equipped with the metric
induced from the ambient space ⟨X, Y⟩= tr(XT Y), SO(n) inherits a bi-invariant metric (i.e., the metric is invariant with
respect to left and right multiplication by matrices of the group). The tangent space at the identity element of SO(n) is a
Lie algebra of SO(n), which is essentially the group of skew-symmetric matrices,

so(n) = {A ∈ Rn×n ∣∣A+AT = 0}. (33)

The Lie exponential map is a map from the Lie algebra g of a Lie group G to the group itself, which is an important tool
for studying local structure of Lie groups. Specifically, it is written as:

exp : g→ G

A 7→ exp(A) := I+A+
1
2

A2 + · · · . (34)

For the special group SO(n), which is connected and compact [27], the Lie exponential map from so(n) to SO(n) is
surjective, which means ∀U ∈ SO(n), ∃A ∈ so(n),exp(A) = U. Follow [27], an optimization problem from SO(n) is
equivalent to its corresponding optimization problem in Euclidean space, via Lie exponential mapping. In other words,

min
U∈SO(n)

f (U) ⇐⇒ min
A∈so(n)

f (exp(A)). (35)



Furthermore, combining with the isomorphic mapping from vector space to so(n) [26],

α : R
n(n−1)

2 → so(n)

B 7→ B−BT , (36)

where R
n(n−1)

2 refers to the space of upper triangular matrices with zero diagonal entries, we reach the following equiv-

alent optimization problem on the Euclidean space R
n(n−1)

2 .

min
U∈SO(n)

f (U)⇔ min
A∈so(n)

f (exp(A))⇔ min
B∈R

n(n−1)
2

f (exp(B−BT )). (37)

In implementation, solving the exponential mapping is computationally expensive, especially for large scale matrices.
Therefore, we use the Cayley retraction, a first order approximation for the exponential mapping [26]:

exp(A)≈ ϕ(A) = (I+
1
2

A)(I− 1
2

A)−1. (38)

Therefore, given any tensor D ∈ PSD(n), according to the existence of its spectral decomposition via Eq. (32) and the

two surjective mappings of Eqs. (34, 36), there exists an upper triangular matrix with zero diagonal entries, B ∈R
n(n−1)

2 ,
and a diagonal matrix with non-negative diagonal entries, Λ ∈ SD(n), that satisfy Eq. (28).

• Conversely, given any upper triangular matrix with zero diagonal entries, B ∈ R
n(n−1)

2 , and any diagonal matrix with
non-negative diagonal entries, Λ ∈ SD(n), Eq. (28) computes a symmetric PSD tensor, D ∈ PSD(n). Here, we give brief
illustrations for the cases of n = 2, 3, corresponding to diffusion tensors on 2D and 3D domains in our work respectively.

– 2D tensors. Denote B =

[
0 s
0 0

]
∈ R

2(2−1)
2 , applying Eq. (36) we have

B 7→ A := α(B) =
[

0 s
−s 0

]
∈ so(2), (39)

applying Cayley retraction in Eq. (38) we have

A 7→ U := exp(A)≈
[

1 s
2

− s
2 1

] [
1 − s

2
s
2 1

]−1

=
1

s2 +4

[
4− s2 4s
−4s 4− s2

]
∈ SO(2), (40)

Combining with any given diagonal matrix with non-negative diagonal entries, Λ∈ SD(2), we obtain D=UΛUT ∈
PSD(2) by definition.

– 3D tensors. Denote B =

0 s1 s2
0 0 s3
0 0 0

 ∈ R
3(3−1)

2 , applying Eq. (36) we have

B 7→ A := α(B) =

 0 s1 s2
−s1 0 s3
−s2 −s3 0

 ∈ so(3), (41)

applying Cayley retraction in Eq. (38) we have
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Combining with any given diagonal matrix with non-negative diagonal entries, Λ∈ SD(3), we obtain D=UΛUT ∈
PSD(3) by definition.



C. PyTorch Advection-Diffusion PDE Toolkit: Brief Manual on Numerical Derivations
Our advection-diffusion PDE toolkit is designed to solve, separately or jointly, advection and diffusion PDEs (1/2/3D).

∂C(x, t)
∂ t

=
∂C(x, t)

∂ t

∣∣∣∣
adv

+
∂C(x, t)

∂ t

∣∣∣∣
diff

=−∇(V(x) ·C(x, t))︸ ︷︷ ︸
Fluid flow

+∇ · (D(x)∇C(x, t))︸ ︷︷ ︸
Diffusion

(∇ ·V = 0) =−V(x) ·∇C(x, t)︸ ︷︷ ︸
Incompressible flow

+∇ · (D(x)∇C(x, t))︸ ︷︷ ︸
Diffusion

. (43)

One can choose to model the velocity field as a constant, a vector field, or a divergence-free vector field (for impressible
flow). Furthermore, the diffusion field can be modeled as a constant, a non-negative scalar field, or a symmetric positive
semi-definite (PSD) tensor field. The toolkit is implemented as a custom torch.nn.Module subclass, such that one can
directly use it as an advection-diffusion PDE solver for data simulation or easily wrap it into DNNs or numerical optimization
frameworks for inverse PDE problems, i.e., parameters estimation.

C.1. Computing Advection

Given a certain velocity field V, we have the advection equation generally written as:

∂C
∂ t

∣∣∣∣
adv

=−∇ · (VC), V ∈ Rd(Ω), (44)

where d refers to the dimension of the domain Ω, C = C(x, t) denotes the mass concentration at location x ∈ Ω and time t.

For 1D domains, or the special case where the velocity is constant (V ) over space, Eq. (44) is simplified as ∂C
∂ t

∣∣∣∣
adv

=−V ·∇C.

Advection with Incompressible Flow Assume the the velocity field V is divergence free, i.e., ∇ ·V = 0, we have

∂C
∂ t

∣∣∣∣
adv

=−∇ · (VC) =−∇ ·VC−V ·∇C =−V ·∇C. (45)

First-order Upwind Scheme Given a 3D volumetric concentration image C =
(
Ci, j,k

)
Nx×Ny×Nz

with grid sizes ∆x, ∆y, ∆z,
we approximate the partial differential derivatives in the advection equation (the right hand side of Eq. (44)) using upwind dif-
ferences. We apply a first-order upwind scheme along each direction x, y, z, based on the corresponding velocity components
V x,V y,V z of V. Specifically, ∂C

∂x at (i, j, k) is determined as:
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(46)

Courant-Friedrichs-Lewy Condition for Advection To ensure that the above upwind scheme is numerically stable when
integrating Eq. (44), the following Courant-Friedrichs-Lewy condition (CFL) should be satisfied:

c = ∑
ax∈{x,y,z}

V ax ∆t
∆ax

≤ cmax, (47)

where cmax approximately equals to 1 when applying explicit methods for ordinary differential equations (ODEs) [19, 25].

C.2. Computing Diffusion

Given a certain diffusion field D, the diffusion equation is written as:

∂C
∂ t

∣∣∣∣
diff

= ∇ · (D∇C), D ∈ Rn×n(Ω). (48)

where C = C(x, t) denotes the mass concentration at location x ∈ Ω and time t. For 1D domains, or the special case where

the diffusion is a constant or a scalar field (D), Eq. (48) can be simplified to ∂C
∂ t

∣∣∣∣
diff

= D ·∆C.



Nested Central-Forward-Backward Differences In order to obtain a more stable numerical discretization scheme for the
diffusion part in Eq. (48), in practice, we explicitly compute its expanded formula. Here, we give the brief illustration of our
discretization scheme for n = 2, n = 3, corresponding to the diffusion tensors on 2D and 3D domains, respectively. (D are
represented via Eq. (40) (2D) or Eq. (42) (3D) when the diffusion fields are assumed to be symmetric PSD.)

• 2D tensors. For symmetric PSD tensor field D =

[
Dxx Dxy
Dxy Dyy

]
∈ R2×2(Ω):
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• For symmetric positive semi-definite tensor D =
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Specifically, we use the central difference scheme for discretizing all first-order spatial derivatives in (a), and nested
forward-backward differences for all second-order operators in (b).

Mesh Fourier Number for Diffusion To ensure that the above finite difference scheme for diffusion is numerically stable
when integrating forward in time, the following condition should be satisfied4:

F = ∑
ax∈{x,y,z}

Dax ∆t
∆ax2 ≤ 1

2
, (51)

where Dax, ax ∈ {x,y,z} refer to the diagonal entries Dxx, Dyy, Dzz of the diffusion tensor D.

C.3. Numerical Solution

As introduced above, after discretizing all the spatial derivatives on the right side of Eq. (43), we obtain a system of
ordinary differential equations (ODEs), which can be solved by numerical integration. We then use the RK45 method to
advance in time (δ t) to predict Ĉt+δ t . Note when the input mass transport time-series has relatively large temporal resolution
(∆t), the chosen δ t should be smaller than ∆t to satisfy the stability conditions discussed in Supp. C.1-C.2, thereby ensuring
stable numerical integration.

4See https://hplgit.github.io/fdm-book/doc/pub/book/sphinx/. book011.html.



D. Brain Advection-Diffusion Dataset

MRA Vessels [36] Vessel Direction [17] Velocity

Figure D.11: Velocity simulation workflow (images shown in maximum intensity projection (MIP)), the last two vector fields
are displayed in RGB maps (red - sagittal; green - coronal; blue - axial).
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Figure D.12: Diffusion simulation workflow. DTI is estimated from DWIs using Dipy [18]. The scalar maps of DTI are then
computed to describe the diffusion tensor structure.

Our brain advection-diffusion simulation dataset is based on the public IXI brain dataset5, from which we use 200 pa-
tients with complete collections of T1-/T2-weighted images, magnetic resonance angiography (MRA) image, and diffusion-
weighted images (DWI) with 15 directions for the simulation of 3D divergence-free velocity vector and symmetric PSD
diffusion tensor fields. All above images are resampled to isotropic spacing (1mm), rigidly registered intra-subject, and
skull-stripped using ITK6.

D.1. Divergence­free Velocity Vector Field Simulation (Fig. D.11)

Blood Vessel Segmentation Brain blood vessels are segmented by ITK-TubeTK using T1-/T2-weighted and MRA images,
where T1-/T2-weighted images are used to obtain more robust segmentation results7.

5Available for download: http://brain-development.org/ixi-dataset/.
6Code in https://github.com/InsightSoftwareConsortium/ITK.
7Code in https://github.com/InsightSoftwareConsortium/ITKTubeTK/tree/master/examples/MRA-Head.



t = 1 t = 10 t = 20 t = 30 t = 40

Figure D.13: Time-series of one brain advection-diffusion sample. Top: on one axial slice; Middle: on one coronal slice;
Bottom: on one sagittal slice.

Principal Vessel Direction Inference We infer a vessel’s directions by analyzing the spectral decomposition of the second
order derivatives (Hessian, HI) of the vessel segmentation image I:

HI = UIΛIUT
I =

[
u1 u2 u3

]λ1
λ2

λ3


uT

1
uT

2

uT
3

 . (52)

where the eigenvalues are sorted by their absolute values as |λ1| ≤ |λ2| ≤ |λ3|. Following Frangi et al. [17], the eigenvector u1
corresponding to λ1 with the smallest absolute value, indicates the direction along the vessel, while the remaining eigenvectors
u2, u3 form a base for the orthogonal plane crossing the vessel. We therefore take u1 as the vessel direction maps.

In order to reduce the effect from the sign ambiguity of eigenvector directions and thus obtain more consistent flow
velocity directions, we first extract the centerline of the vessel map and determine the flow directions along the centerline.
Specifically, we start at the point with the largest MRA intensity along the centerline, from which we set the flow direction
to its nearest centerline point. Likewise, we traverse all points along the centerline and successively assign directions for the
nearest point along the centerline. Afterwards, velocity directions of the remaining voxels within the vessels are set to be the
same as its nearest centerline point. I.e., flip the sign of the velocity component if it is not the same with that of its nearest
centerline point. In this way, we ensure a velocity field with consistent flow directions.

Divergence-free Velocity Simulation The velocity field V is obtained, by multiplying the vessel direction maps with the
MRA intensities, to reflect the local velocity magnitudes. We scale the value range of the velocity field to [−1, 1], and
additionally compute velocity fields with 50% of the original velocity values.

Divergence-free velocity fields Vdiv are then estimated from V via Eq. (19) using numerical optimization, by encouraging
Vdiv := ∇×Ψ close to V:

min
Ψ

∥∥∇×Ψ−V
∥∥2

2, Ψ ·n
∣∣
∂Ω = 0, Ψ ∈ R3(Ω). (53)



D.2. Symmetric PSD Diffusion Tensor Field Simulation (Fig. D.12)

Diffusion Tensor Estimation Diffusion tensors are reconstructed from the DWIs using Dipy8 [18]. Specifically, the diffu-
sion tensors are estimated based on the following equation:

S(g, b)
S0

= e−bgT Dg, (54)

where g is a unit vector indicating the direction of measurement and b are the parameters of measurement, e.g., incorporating
the strength and duration of the diffusion-weighting gradient. S(g, b) is the diffusion-weighted signal measured and S0 is the
signal measured with no diffusion weighting. D is the symmetric PSD tensor which contains six free parameters to be fit:

D =

Dxx Dxy Dxz
Dxy Dyy Dyz
Dxz Dyz Dzz

 . (55)

We scale the value range of the diffusion tensor fields for each subject sample to [−0.2, 0.2], and additionally compute
diffusion fields with 50% of the original diffusion values.

Diffusion Scalar Maps Upon obtaining the diffusion tensor D, we decompose it into eigenvectors (U) and eigenvalues (Λ):

D = UΛUT =
[
u1 u2 u3

]λ1
λ2

λ3


uT

1
uT

2

uT
3 ,

 . (56)

from which we can further visualize the diffusion scalar maps [38], which describe tensor structure. In this work, we consider
(1) Trace (trD),

trD = λ1 +λ2 +λ3; (57)

(2) Fractional anisotropy (FA),

FA =

√
1
2

√
(λ1 −λ2)2 +(λ2 −λ3)2 +(λ3 −λ1)2

λ 2
1 +λ 2

2 +λ 2
3

; (58)

(3) Principal diffusion orientation (Uprin), the eigenvector Uprin = [ux, uy, uz]
T corresponding to the largest eigenvalue.

Further, we also visualize the color-by-orientation (CbO) map, by assigning colors to voxels based on a combination of
FA and Uprin, i.e.,

Red = FA ·ux; Green = FA ·uy; Blue = FA ·uz. (59)

D.3. Brain Advection­diffusion Time­series Simulation (Fig. D.13)

For each brain advection-diffusion sample, the initial concentration state is assumed to be given by the MRA image with
intensity ranges rescaled to [0, 1].Time-series (length NT = 40, interval ∆t = 0.1s) are then simulated given the computed
divergence-free velocity fields (Supp. D.1) and symmetric PSD diffusion tensor fields (Supp. D.2) by our advection-diffusion
PDE solver (Supp. C). Thus the simulated dataset includes 800 brain advection-diffusion time-series (4 time-series for each
of the 200 subjects, based on the four combinations of the simulated two velocity fields and two diffusion fields).

8Code in https://github.com/dipy/dipy.


