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1. Network Architecture
In this section, we describe more details of the proposed

DependencyNet in Figure 1. The kernel sizes, operation
types, and output channels are displayed in the boxes. The
three dependency reasoning modules, i.e. intra-class, inter-
class, and global, are distinguished by different colors in the
figure.

The global reasoning (green) branch and the Lseg (gray)
branch consist of only group convolutions. As a result,
there is no information exchange among different groups.
Moreover, the kth group of features are only supervised
by the ground truth of category k so that they are guided
to encode the spatial and semantic representations of ob-
jects that belong to the kth category. The intra-class de-
pendence module (blue) updates the class-specific repre-
sentations by two group convolutions. The inter-class de-
pendency module (orange) conducts spatial and semantic
reasoning among different classes via two group weighted
convolutions (gwConv). The interactions among different
categories are based on prior knowledge about the inter-
class dependency relations, which is extracted from training
annotations. Finally, the representation of each category is
further refined by multiplying it with the probability that ob-
jects of the corresponding category exist in the whole scene.

For all group-based operations, i.e., group convolutions
and group weighted convolutions, the number of groups
equals the number of categories. For example, the number
of groups is 20 for the Cityscapes dataset, which includes
19 foreground classes and a background class.

As for the complexity of our design, given a batch size of
4, an input size of 768x768 and a Resnet-101 baseline, the
model size increases from 47.9M to 52.6M and the GPU
memory consumption increases from 21.1G to 22.3G. In
testing, the computational complexity increases from 1497
GFLOPS to 1617 GFLOPS. In our ablation study, we built
the baselines by replacing our modules with conventional
convolutions to retain the network depth and model size and
showed that the performance gain was not caused by an un-
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Figure 1. Detailed architecture of the proposed DependencyNet.
All convolutions, except for those directly linked to the loss func-
tions, are followed by a batch normalization and a ReLU activa-
tion.

fair advantage of model complexity.

2. Difference with Dependency Modeling in
Pre-Deep Era

In this section, we detail the difference between the pro-
posed DependencyNet and the dependency modeling in the
pre-deep era.



Intra-class dependency. The relations among parts and
an object are conventionally modeled via deformable part-
based models (DPMs) [3], compositional models [8, 18],
and grammar models [19]. They explicitly model the dis-
placement of each part w.r.t. the object. By contrast, we
perform group convolutions on category-specific represen-
tations. More recently, [5] generates part proposals via a
network and constrains them via the object for semantic
part detection. They need part annotations during training.
However, we do not use part proposals nor require part su-
pervision, and our goal is pixel labeling.

Inter-class dependency. Some prior approaches [14, 4,
2, 1] build a CRF to model the co-occurrence statistics of
objects and their spatial arrangements in an image. [7] di-
vides objects into things and stuff, and explicitly models
their spatial relations. Instead of using a graphical model,
we incorporate the dependency graph in a CNN and per-
form reasoning via our novel group weighted convolutions,
which have never been studied before.

Global dependency. [13, 11] predict the presence of
each object via global image features and then use it to turn
on/off local detectors in a graphical model. Several other
works [15, 10, 16, 9, 17] retrieve the best matches of an
input image from an annotated image database via global
descriptors and transfer their labels via dense pixel or su-
perpixel correspondence. [12] extends the DPM with poten-
tial functions modeling the presence of objects in the global
image and local neighborhood. The work most related to
ours is [6], which refines the detection score of a window
by multiplying it with the probability of object presence in
the image. Our global dependency module differs in that
(1) it predicts the presence of each class via their respective
category-specific representations, (2) it passes the global in-
formation to each pixel for semantic segmentation, and (3)
it is built in a neural network and learned end-to-end with
the backbone and other reasoning modules.

3. Ablative Study
The Impact of Weights in Loss Function. Recall the

final loss function L is

L = Lmain + λ1 × Lg + λ2 × Lseg (1)

Lmain supervises the learning of the final segmentation out-
put. Lg is designed to help the network to learn a global
scene representation. Lseg is an intermediate supervision to
spatially supervise the category-specific representations. λ1
and λ2 are weights of Lg and Lseg , respectively.

The influence of different values of λ1 and λ2 on the
performance is demonstrated in Table 1 and Table 2, respec-
tively. In the experiments, we use all the three dependency
reasoning modules and only change the weights. The opti-
mal performance is achieved when both λ1 and λ2 are set

Backbone λ1 mIoU%

ResNet50 0.05 77.14
ResNet50 0.1 77.66
ResNet50 0.3 76.37

Table 1. Ablative studies of weight λ1 on the Cityscapes validation
dataset. λ2 is set to 0.1 in these experiments.

Backbone λ2 mIoU%

ResNet50 0.05 76.98
ResNet50 0.1 77.66
ResNet50 0.3 76.29

Table 2. Ablative studies of weight λ2 on the Cityscapes validation
dataset. λ1 is set to 0.1 in these experiments.

Backbone Inter mIoU%

ResNet50 gwConv×1 74.50
ResNet50 gwConv×2 77.66
ResNet50 gwConv×3 76.75

Table 3. Ablative studies of the number of group weighted convo-
lutions (gwConv) on the Cityscapes validation dataset.

Backbone Inter mIoU%

ResNet50 Gconn 77.66
ResNet50 Gedge 77.41
ResNet50 Gmean−ari 76.85
ResNet50 Gmean−geo 75.86
ResNet50 Gmean−qua 77.05

Table 4. Ablative studies of different graph integration strategies.
The graphs Gmean−ari, Gmean−geo and Gmean−qua are respec-
tively calculated by taking the arithmetic mean, geometric mean,
and quadratic mean of Gconn and Gedge.

to 0.1.
The Impact of the Number of gwConv. The group

weighted convolution (gwConv) is designed to exploit inter-
class dependency relations for spatial and semantic reason-
ing. We use all three dependency modules in this ablative
study and change the number of gwConv in the model. As
shown in Table 3, the optimal number of gwConv is 2.

The Impact of Different Graph Integration Strate-
gies. We have investigated two different strategies to dis-
cover the dependency graph from training annotations, i.e.,
Gconn and Gedge. They have their respective pros and cons.
Here we study whether their integration can further im-
prove the performance. Specifically, three different aver-
aging methods are compared.

First, Gmean−ari is the arithmetic mean of the two
graphs, whose edges are

{emean−ari
i,j = (econni,j + eedgei,j )/2 : ∀i, j} (2)



where econni,j and eedgei,j denote edges in Gconn and Gedge re-
spectively, indicating the degree of category i’s dependency
on category j.

Second, Gmean−geo takes the geometric mean of the two
graphs:

{emean−geo
i,j =

√
econni,j × eedgei,j : ∀i, j} (3)

Third, Gmean−qua uses the quadratic mean, also known
as the root mean square, of the two graphs:

{emean−qua
i,j =

√
((econni,j )2 + (eedgei,j )2)/2 : ∀i, j} (4)

In this ablative study, we use all intra, inter, and global
reasoning modules and validate the effectiveness of differ-
ent dependency graphs in the inter-class module. Results
are displayed in Table 4. The three integrated graphs do
not perform as well as the two individual graphs Gconn and
Gedge. One possible reason is that these integration meth-
ods have damaged some important relations encoded in the
original graphs.
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