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Abstract

This supplementary document is organized as follows:
1) more training details in Section 1; 2) details on net-
work inference in Section 2; 3) detailed architectures in Sec-
tion 3; 4) qualitative studies in Section 4. All notations are
followed from the paper.

1. Training
We defined the center heatmaps in Equation 1 from the

paper such that the centers are converted into 2D Gaussian
masks. The standard deviations σx and σy are computed
based on the desired radii ai and bi along x-axis and y-axis,
respectively:

(σx, σy) =
1

3
(ai, bi) =

1

3
b(
√
2− 1) si/τ + 1c. (1)

The values of ai and bi are determined by Eq.(1) such that
for any point within the ellipse region of radii ai and bi,
when using it as a center to create a bounding box of object
size si, the bounding box has at least 0.5 intersection over
union (IoU) with the GT bounding box.

Then the prediction of center heatmaps can be super-
vised by forms of distance losses such as Gaussian focal
loss [5, 7, 13] with hyper-parameters α = 2 and γ = 4 for
weight balancing. Let Ô be the predicted center heatmap,
then the pixel-wise loss LOc,x,y

is defined as:

LOc,x,y
=

{
(1− Ôc,x,y)

α log(Ôc,x,y) if Oc,x,y = 1

(Ôc,x,y)
α(1−Oc,x,y)

γ log(1− Ôc,x,y) o/w.
(2)

2. Inference
In this section, we provide more details on inference and

post-processing of our proposed fully convolutional scene
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graph generation (FCSGG). Our model outputs four dense
feature maps: center heatmaps Ô, center offsets ∆̂ , ob-
ject sizes Ŝ and relation affinity fields (RAFs) F̂. To get
the object centers, we follow the same step in [13]. Specifi-
cally, a in-place sigmoid function is applied to the predicted
center heatmaps Ô such that their values are mapped into
the range of [0, 1]. Then a 3 × 3 max pooling is applied
to center heatmaps for filtering duplicate detections. For a
point p = (x, y), the value of Ôc,x,y is considered as the
measurement of the center detection score for object class
c. Then peaks in center heatmaps are extract for each object
class independently. We keep the top 100 peaks by their
scores and get a set of object centers {oi}100i=1 with object
classes {ci}100i=1.

To get the corresponding center offset and object size
given a detected object center ôi = (x̂i, ŷi), we simply
gather the values from ∆̂ and Ŝ at ôi. We can get the
center offset δ̂

i
= ∆̂x̂i,ŷi = (δ̂ix, δ̂

i
y), and the object

size ŝi = Ŝx̂i,ŷi = (ŵix, ĥ
i
y). Finally, the bounding box

(x̂i0, ŷ
i
0, x̂

i
1, ŷ

i
1) of object b̂i can be recovered by

x̂i0 =
(
x̂i + δ̂ix − ŵi/2

)
· τ

ŷi0 =
(
ŷi + δ̂iy − ĥi/2

)
· τ

x̂i1 =
(
x̂i + δ̂ix + ŵi/2

)
· τ

ŷi1 =
(
ŷi + δ̂iy + ĥi/2

)
· τ,

(3)

where τ is the stride of the output features.
As for multi-scale prediction, we gather the top 100 de-

tected objects for each scale, then perform a per-class non-
maximum suppression (NMS) and keep the top 100 boxes
from all the detections, e.g., if there are 5 scales, we will
keep the top 100 boxes from the 500 boxes across all the
five scales.

2.1. Path Integral

For multi-scale RAFs, we select the valid object pairs
from the kept 100 detections {oi}100i=1 following the rule de-
fined in Section 4.2 from the paper. For example, we define
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the predicted 5-scale RAFs as {F̂k}7k=3. If the distance be-
tween ôi and ôj is within [0, 64], then the path integral from
ôi to ôj will be only performed on F̂3. We gather the top
100 relationships from each scale, and keep the top 100 re-
lationships across all scales for evaluation.

Mentioned in the paper, the path integral is per-
formed using matrix multiplication in practice. Specifi-
cally, we determine the longest integral “length” mmax =
dMAX({mi→j |∀i 6= j})e among the predicted object cen-
ters {ôi}. In other words, there will be mmax sampled
points along the integral path for each pair of object cen-
ters regardless of their distance.

2.2. Performance Upper Bound

One may concern the relation affinity field representation
can actually work and reconstruct relationship successfully
by path integral. We analyze the performance upper bound
by using the ground-truth of objects and RAFs for evalu-
ation on the test set. It achieves 91.13 R@20 and 86.85
mR@20, which proves that our proposed method is capa-
ble of recovering scene graphs from our definition of RAFs.
It is worth noting that it is not possible to get 100% re-
call since there exist multiple edges between nodes in some
ground-truth annotations.

3. Detailed Architectures
In this section, we provide more details of the proposed

fully convolutional scene graph generation model. Our
codebase is based on Detectron2 [12] and Tang et al. [9].
We list the models mentioned in the paper in Table 1 again
for convenience. The number of parameters (#Params) of
each network module is also listed in Table 1. As shown in
the table, the backbone network has the largest number of
parameters while the heads are relatively small.

3.1. Backbone

The backbone network serves as a feature extraction
module in most of the deep learning applications. We
choose the widely used network ResNet [3] and a recent
successful alternative named HRNet [11]. ResNet is a rep-
resentative of deep networks such that the resolution of the
feature maps is downsampled while the number of channels
is increased, sequentially. ResNet can be divided into stages
after the “stem” (first several convolutional layers of the
backbone), and the output features of each stage is named
as C2, C3, C4, and C5 respectively. On the other hand,
HRNet maintains a higher feature resolution all the way to
the network output, and constructs several branches of fea-
tures with lower resolutions. Features from each branch will
be fused for exchanging information repeatedly. The out-
put features of each branch are named as C2, C3, C4, and
C5 respectively for convenience. The conceptual architec-
ture diagrams of ResNet and HRNet are shown in the figure

1. We do not change the architecture and hyper-parameters
of the backbone network with respect to the original pa-
pers [3, 11].

3.2. Neck

As presented in the paper, the neck networks serves as
a module for constructing multiple scales of features that
can be used for later predictions. We use feature pyramid
network (FPN) [6] as the neck for ResNet, which is widely
used for object detection [2, 7, 10]. FPN allows informa-
tion exchange across different scales of features after back-
bone feature extraction. By up-sampling higher level of fea-
tures (e.g. C5) then summing with lower level of features
(e.g. output features from C4 after a 1 convolution) con-
secutively, a pyramid of feature maps (with the same num-

Image

C2 C3 C4 C5

(a) An example of ResNet, where C = 256 for ResNet-50 and
ResNet-101.

Image

C2 C3 C4 C5

(b) An example of HRNet, where C = 32 for HRNetW32 and
C = 48 for HRNetW48.

Figure 1: Conceptual backbone architectures.
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FCSGG Backbone #Params Neck #Params Object detection heads Relation detection head #Params
HRNetW32-1S Figure 1b, C=32 29.3M Figure 2c 0.0M 256 - 256 - 256 - 256 512↘ - 512 - 512 - 512 -↗ 18.0M
HRNetW48-1S Figure 1b, C=48 65.3M Figure 2c 0.0M 256 - 256 - 256 - 256 512↘ - 512 - 512 - 512 -↗ 20.8M
ResNet50-4S-FPN×2 Figure 1a, C=256 23.6M Figure 2a 11.4M 64 - 64 - 64 - 64 64 - 64 - 64 - 64 1.1M
HRNetW48-5S-FPN×2 Figure 1b, C=48 65.3M Figure 2b 6.3M 256 - 256 - 256 - 256 512 - 512 - 512 - 512 15.5M

Table 1: FCSGG model zoo. The detailed architectures are described in corresponding figures and tables. The symbol C
represents the number of feature channels in C2. Columns 6 and 7 show the number of channels for each convolution in
heads. Notation↘ denotes that the convolution is of stride 2, and↗ is bilinear interpolation for upsampling the features to
the target stride ( 14 of the input image size for HRNetW32-1S and HRNetW48-1S).
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Figure 2: Conceptual neck architectures. The left sub-figure
(a) represents the FPN, and the right sub-figure (b) repre-
sents HRNetV2p with five scales of features. The dashed
block (c) represents the feature fusion module for the single-
scale HRNet.

ber of channels) is built and called {P2, P3, P4, P5}. For
ResNet50-4S-FPN×2, we use a modified version of FPN
called bidirectional FPN (BiFPN [8]) which allows more
connections among each scale. A detailed illustration of
FPN as a neck is shown in Figure 2a.

As for HRNet as backbone, we follow Wang et al. [11]
and use the HRNetV2 for single-scale prediction, and HR-
NetV2p network for multi-scale feature representations. It
should be addressed that even for single-scale models like
HRNetW32-1S and HRNetW48-1S, a neck is applied for
merging features from all branches. In this case, the neck
is simply a feature fusion module without any trainable pa-
rameters. Features of C2, C3, C4, and C5 will be upsampled
to the resolution of C2 via bilinear interpolation then con-
catenated. We name the fused features as Cfused. Different
from HRNetV2 [11], we did not use 1× 1 convolution after
fusion, and the resulting features will be fed into the heads.
As for HRNetV2p, the first step is the same as HRNetV2,

then a max pooling and a 3 × 3 convolution are applied on
Cfused with different strides to construct multiple scales of
feature maps. The designs of necks for HRNet are shown in
Figure 2b.

3.3. Heads

There are in total of four heads, and each head is respon-
sible for the task of predicting center heatmaps, center off-
sets, object size and relation affinity fields respectively. We
name the first three heads as object detection heads, and
the last one as the relation detection head. As stated in the
paper, all heads are small network with four convolutional
blocks, each of which consists of a 3 × 3 convolution, a
normalization layer of choice such as group normalization
(GN), batch normalization (BN) or multi-scale batch nor-
malization (MS-BN), and a ReLU activation layer. Then,
for each head, there is a 1 × 1 convolution as the output
layer, and the number of channels is C, 2, 2 and P respec-
tively. The number of channels are the same among object
detection heads except the output layer, while we increase
the number of channels for relation detection head in some
models. We list the number of channels in each block for
object detection heads and relation detection head as shown
in Table 1 (the output convolution is omitted).

(a) Field color coding. (b) The corresponding vectors.

Figure 3: The color coding for RAFs.
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4. Qualitative Results
We adopt the visualization method for optical flow [1]

on visualizing relation affinity fields. Shown in Figure 3,
the vector orientation is represented by color hue while the
vector length is encoded by color saturation. We only vi-
sualize the bounding boxes with predicted scores over 0.2,
and relationships with scores over 0.1.

The visualizations of scene graph detection (SGDet) re-
sults for several test images from Visual Genome dataset [4]
are shown in Figure 5. From the figure, FCSGG has strong
object detection performance, especially on the localization
of bounding boxes. In Figure 5a, pole can be recognized
even though it is not annotated in the ground-truth. In Fig-
ure 5f, FCSGG detects more and accurate objects compared
to the ground-truth.

However, there are two challenges for training on Visual
Genome dataset: object class ambiguity and predicate am-
biguity. For the first challenge, as an example of Figure 5a,
Jacket is misclassified as coat which is reasonable since
the semantic difference between the two is subtle. Mean-
while, it also detects the person instance with even better
bounding box than the ground-truth. However, it misclassi-
fied man as woman. As a result, all the relationships asso-
ciated with man will be false detections. Similarly in Fig-
ure 5e, woman is misclassified as lady. We argue that
these person-centric relationships take a large proportion in
the Visual Genome dataset, and it is difficult to visually dis-
tinguish among person entities of similar semantics such as
woman / lady, boy / kid, man / men, and person /
people. Even though, FCSGG achieves superior object
detection performance on Visual Genome dataset.

The other challenge is the predicate ambiguity. Even
though VG-150 only keeps the top 50 frequent pred-
icates, there are still predicates with similar semantics
(e.g. OF / PART OF, WEARING / WEARS, LAYING ON
/ LYING ON), or with vague and trivial meanings (e.g.
OF, TO, NEAR, WITH). FCSGG is still able to capture
similar semantics with similar responses. For exam-
ple, we see similar RAFs predictions between WEARING
and WEARS (Figure 5a and 5d). Since we do not add
any predicate-specific hyper-parameters or statistic bias
during training, there will always be some loss con-
tributed by the predicate ambiguities that causes the train-
ing even harder. However, FCSGG achieves strong gen-
eralization on relationship prediction. In Figure 5c, it
predicts <man, RIDING ,motorcycle>, <person,
SITTTING ON, motorcycle>, and motorcycle,
UNDER, person> concurrently though neither of these
are annotated in the dataset.

It should be addressed that multiple predicates could be
all valid for a pair of objects, e.g. both <person, ON,
street> and <person, STANDING ON, street>
can represent the correct relationship. Our proposed

RAFs are suitable for multi-class problem so that our no-
graph constraint results are much improved. More impor-
tantly, <street, UNDER, person> is actually true
even though we rarely describe this way due to language
bias. Interestingly, FCSGG generalizes the relationships
and learns the reciprocal correlations between predicates.
From the visualizations in Figure 5a and 5d, ABOVE and
UNDER will have responses with similar vector magnitudes
but opposite directions. We can also see the similar pattern
between OF and HAS.

(a) (b)

(c)

Figure 4: The RAF visualizations of WEARING for wild
images. Among the images, (b) has the largest RAF vector
norm before normalization.

We then tested on wild images for examining the appli-
cability of our approach. For testing predicate WEARING,
we downloaded 3 online images containing jacket shown
in Figure 4 but in different scenarios: a product photo of
jacket (4a); man WEARING jacket (4b); jacket ON
bed (4c). The RAF predictions for WEARING are visu-
alized, and the maximum unnormalized RAF vector norm
is 0.79, 4.02, and 0.67 for 4a, 4b, and 4c, respectively.
The predicate WEARING gets the strongest response in Fig-
ure 4b among the three images, demonstrating that RAFs
successfully capture the semantics. It also exposes the prob-
lem of learning bias, such that even no person presents in 4a
and 4c, there are responses of WEARING since jacket and
WEARING often coexist.
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(1) Input image. (2) Ground-truth objects. (3) Predicted objects.

(4) Ground-truth scene graph. (5) Predicted RAFs of selected predicates.

(a) Visualizations of test image 2343157.jpg.
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(1) Input image. (2) Ground-truth objects. (3) Predicted objects.

(4) Ground-truth scene graph. (5) Predicted RAFs of selected predicates.

(b) Visualizations of test image 2343530.jpg.
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(1) Input image. (2) Ground-truth objects. (3) Predicted objects.

(4) Ground-truth scene graph. (5) Predicted RAFs of selected predicates.

(c) Visualizations of test image 2343342.jpg.
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(1) Input image. (2) Ground-truth objects. (3) Predicted objects.

(4) Ground-truth scene graph. (5) Predicted RAFs of selected predicates.

(d) Visualizations of test image 2342735.jpg.
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(1) Input image. (2) Ground-truth objects. (3) Predicted objects.

(4) Ground-truth scene graph. (5) Predicted RAFs of selected predicates.

(e) Visualizations of test image 2342618.jpg.
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(1) Input image. (2) Ground-truth objects. (3) Predicted objects.

(5) Predicted RAFs of selected predicates.(4) Ground-truth scene graph.

(f) Visualizations of test image 2343159.jpg (there are duplicate relationships in the annotation).

Figure 5: Visualizations of results on VG-150 test set.
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